A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi...A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.展开更多
The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surfa...The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surface treatments to protect against corrosion or wear.This study presents a novel approach for the simultaneous delivery of two distinct corrosion inhibitors to Ti-Mg dissimilar PEO treated joints on demand.The research focuses on the synthesis,characterization,and application of cerium@polystyrene(Ce@PS)nanocontainers,which are loaded with 8-hydroxyquinoline(8-HQ)to enhance corrosion protection.The synthesis involves several key steps,including the formation of a cerium-based outer layer around polystyrene nanospheres,the selective removal of the polystyrene core to create a porous structure,and the subsequent loading of the 8-HQ inhibitor.Structural and compositional analyses,conducted using scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDS),confirmed the successful incorporation of 8-HQ within the nanocontainers.Additionally,Fourier-transform infrared spectroscopy(FTIR)provided detailed information about the chemical composition of the organic materials throughout the synthesis process.Thermal decomposition analysis verified the successful fabrication and stability of the dual-shell nanocontainers.Corrosion tests on Ti-Mg joints treated with plasma electrolytic oxidation(PEO)coatings and loaded nanocontainers demonstrated sig-nificantly improved corrosion resistance compared to untreated joints.This research highlights the potential of dual-shell nanocontainers,containing both organic and inorganic inhibitors,to offer prolonged corrosion protection,particularly against galvanic corrosion in dissimilar joints.The findings suggest that these synthesized nanocontainers hold promise for various industrial applications,particularly in the context of friction stir welded(FSW)Ti-Mg dissimilar joints,providing valuable insights for the development of advanced materials designed to mitigate corrosion.展开更多
The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of aci...The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ werepresent in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) onTC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilarjoint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strengthand ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from1×10?4 s?1 to 1×10?2 s?1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture atdifferent strain rates.展开更多
Joining of dissimilar metals will offer many advantages in transportation sectors such as fuel consumption,weightreduction and emission reduction.However,joining of aluminium(Al)alloys with magnesium(Mg)alloys by fusi...Joining of dissimilar metals will offer many advantages in transportation sectors such as fuel consumption,weightreduction and emission reduction.However,joining of aluminium(Al)alloys with magnesium(Mg)alloys by fusion welding processis very complicated.Friction stir welding(FSW)is a feasible method to join these two dissimilar alloys.Mixing these two metalstogether in stir zone(SZ)leads to poor corrosion resistance.In this investigation,an attempt has been made to understand thecorrosion resistance of SZ of FSWed dissimilar joints of AA6061Al alloy and AZ31B Mg alloy.Potentiodynamic polarization testwas conducted by varying chloride ion concentration,pH value of the NaCl solution and exposure time.The corroded surfaces wereanalyzed using optical microscopy,scanning electron microscopy and XRD techniques.Of these three factors investigated,exposuretime is found to be the most significant factor to influence the corrosion behaviour of SZ of friction stir welded dissimilar joints ofAl/Mg alloys.展开更多
The effect of Zn interlayer on the microstructural evolution and mechanical behavior of dissimilar ultrasonic-spot-welded Al/Cu joints was investigated.The tensile lap shear strength in relation to welding energy was ...The effect of Zn interlayer on the microstructural evolution and mechanical behavior of dissimilar ultrasonic-spot-welded Al/Cu joints was investigated.The tensile lap shear strength in relation to welding energy was analyzed.The experimental results show that two intermetallic compounds,Cu5Zn8 and Al2Cu,were generated at the interface of the ultrasonic-spotwelded Al/Cu joint with a Zn interlayer.The primary joining mechanisms of the joint included the intermetallic compound bonding and metallic bonding caused by solid shear plastic deformation.Meanwhile,with increasing welding energy,the plastic deformation of the material became more substantial.With increasing welding energy,the tensile lap shear strength of the joints first increased and then decreased for the ultrasonic-spot-welded Al/Cu joints with and without Zn interlayers.Under the energy input of 700 J,the bearing load capacity of the ultrasonic-spot-welded Al/Cu joints with a Zn interlayer improved signifi cantly due to the observed intermetallic compound(Cu5Zn8).展开更多
It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality.This study is aimed at exploring the properties of friction welded magnesium-titan...It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality.This study is aimed at exploring the properties of friction welded magnesium-titanium dissimilar joint using tensile testing coupled with digital image correlation,optical and scanning electron microscopy,x-ray diffraction and microhardness measurements.Microstructurally different regions such as contact zone,dynamic recrystallized zone,thermo-mechanically affected zone,and partially deformed zone in the magnesium side were observed.No discernible regions were observed in the titanium side,as it had not undergone any significant plastic deformation.Phase analysis indicated that the aluminium from the magnesium side diffused toward the weld interface and formed a thin continuous intermetallic layer by reacting with the titanium.Microhardness mapping showed a steep hardness gradient from the titanium to magnesium side.Critical analysis is done on the tensile characteristics of the specimen and the response of the local regions to the deformation process is mapped.展开更多
The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the ...The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the impact wear volume of the joints increased with the increasing number of impact cycles.The main wear mechanisms include pitting wear,mild fatigue wear,delamination wear,and fatigue wear,and plastic deformation was the primary impact wear mechanism.Among them,fatigue wear had the greatest influence on wear volume,while other wear mechanisms had limited effect.The impact wear resistance of the base material was better than that of the heat-affected zone.Normalizing treatment was beneficial to improving the impact wear resistance of welded joints owing to its effect to promote pearlite recovery,grain refinement,and uniform distribution of grains.The martensite generated in the rail welded joints aggravated the impact wear damage to the materials,which should be avoided.展开更多
A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution...A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.展开更多
The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ...The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.展开更多
Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change wa...Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change was observed to occur after welding, with rod-like α and β phases in the fusion zone (FZ), equiaxed et phases, fine α laths and β phases in the heat-affected zone (HAZ) of TCl7 side and acicular martensite α' phases+"ghost" α phases in the HAZ of Ti60 side, The microhardness across the joints exhibited an inhomogeneous distribution with the highest hardness of ~404 HV in FZ and the lowest hardness of ~304 HV in base material (BM) of Ti60. All the joints tested in tension fractured at BM of Ti60 side. Fatigue limits of the joints at 107 cycles were 425 MPa at room temperature and 380 MPa at 400 ℃, respectively. Welding micropores were found to be the main source of fatigue crack initiation.展开更多
The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fus...The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fusion zone of TC4/TA15 dissimilar welded joints consists of coarsenedβcolumnar crystals that contain mainly acicularα’martensite.The heat affected zone is composed of the initialαphase and the transformedβstructure,and the width of heat affected zone on the TA15 side is narrower than that on the TC4 side.With increasing temperature,the yield strength and ultimate tensile strength of the TC4/TA15 dissimilar welded joints decrease and the highest plastic deformation is obtained at 800°C.The tensile strength of the dissimilar joints with different welding parameters and base material satisfies the following relation(from high to low):TA15 base material>dissimilar joints>TC4 base material.The microhardness of a cross-section of the TC4/TA15 dissimilar joints reaches a maximum at the centre of the weld and is reduced globally after heat treatment,but the microhardness distribution is not changed.An elevated temperature tensile fracture of the dissimilar joints is located on the side of the TC4 base material.Necking occurs during the tensile tests and the fracture characteristics are typical when ductility is present in the material.展开更多
The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys c...The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.展开更多
The fusion welding of dissimilar heat treatable and non-heat treatable aluminium alloy faced many problems related to solidification. The difficulties can be overcome to achieve the combined beneficial properties of b...The fusion welding of dissimilar heat treatable and non-heat treatable aluminium alloy faced many problems related to solidification. The difficulties can be overcome to achieve the combined beneficial properties of both aluminium alloys using friction stir welding(FSW). The microstructural features and tensile properties of friction stir welded(FSW) similar and dissimilar joints made of AA6061 and AA5086 aluminium alloys were investigated. The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscopy. Microhardness was measured at various zones of the welded joints. The tensile properties of the joints were evaluated and correlated with the microstructural features and microhardness values. The dissimilar joint exhibits a maximum hardness of HV 115 and a joint efficiency of 56%. This was attributed to the defect free stir zone formation and grain size strengthening.展开更多
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper...This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.展开更多
This investigation is aimed to establish empirical relationships between continuous multi-seam friction stir cladding process parameters (i.e., rotational speed, welding speed and shoulder overlap ratio) and the qua...This investigation is aimed to establish empirical relationships between continuous multi-seam friction stir cladding process parameters (i.e., rotational speed, welding speed and shoulder overlap ratio) and the quality characteristics (bond tensile strength, shear strength and corrosion) of dissimilar magnesiurn-aluminium alloy clad joints. The influence of considered process parameters on the clad properties was reported. Furthermore, multi-criterion optimization procedure was used to obtain ideal processing conditions, which can yield higher interface strength and lower corrosion rate of fabricated composite plate. Results indicate that, the aluminium-rich thin continuous layer, Mg-rich irregular shaped regions consists of A13Mg2 and Al12Mg17 interraetallic compounds and nature of mechanical interlocking has great influence on the joint interface strength. On the other hand, the corrosion resistance of the clad joints is greatly affected by the amount of magnesium mixed with top aluminium sheet during friction stirring. Also, bend testing shows that, the cladded joints exhibit excellent ductility.展开更多
The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)wa...The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)was used in three different heat inputs,including 0.73,0.84,and 0.97 kJ/mm.The microstructural investigations of different zones including base metals,weld metal,heat-affected zones and interfaces were performed by optical microscopy and scanning electron microscopy.The mechanical properties were measured by microhardness,tensile and impact tests.It was found that with increasing heat input,the dendrite size and inter-dendritic spacing in the weld metal increased.Also,the amount of delta ferrite in the weld metal was reduced.Therefore,tensile strength and hardness were reduced and impact test energy was increased.The investigation of the interface between AISI 316L base metal and ER316L filler metal showed that increasing the heat input increases the size of austenite grains in the fusion boundary.A transition region was formed at the interface between API X70 steel and filler metals.展开更多
Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat tre...Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.展开更多
The microstructures, the changing rule of carbon-enriched zone, the diffusion behaviors of elements C and Cr, and thecarbide type of 0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints after aging at 500℃ for various ti...The microstructures, the changing rule of carbon-enriched zone, the diffusion behaviors of elements C and Cr, and thecarbide type of 0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints after aging at 500℃ for various times and afterlong-term service in technical practice were investigated by using the optical microscopy electron probe microanalysis,scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that in aging0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints, the main carbides are M_3C and a few carbides are M_7C_3 andM_(23)C_6. The M_3C carbide decomposition and dissolution with increasing aging time or aging temperature and theanti-diffusion of C and Cr cause the decrease and disappearance of the carbon-enriched zone. The results are differentfrom those of the A302/1Cr5Mo dissimilar welded joints in previous studies.展开更多
In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the wel...In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A 302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.展开更多
The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argo...The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52275349,52035005)Key Research and Development Program of Shandong Province of China(Grant No.2021ZLGX01)Qilu Young Scholar Program of Shandong University of China.
文摘A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.
文摘The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surface treatments to protect against corrosion or wear.This study presents a novel approach for the simultaneous delivery of two distinct corrosion inhibitors to Ti-Mg dissimilar PEO treated joints on demand.The research focuses on the synthesis,characterization,and application of cerium@polystyrene(Ce@PS)nanocontainers,which are loaded with 8-hydroxyquinoline(8-HQ)to enhance corrosion protection.The synthesis involves several key steps,including the formation of a cerium-based outer layer around polystyrene nanospheres,the selective removal of the polystyrene core to create a porous structure,and the subsequent loading of the 8-HQ inhibitor.Structural and compositional analyses,conducted using scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDS),confirmed the successful incorporation of 8-HQ within the nanocontainers.Additionally,Fourier-transform infrared spectroscopy(FTIR)provided detailed information about the chemical composition of the organic materials throughout the synthesis process.Thermal decomposition analysis verified the successful fabrication and stability of the dual-shell nanocontainers.Corrosion tests on Ti-Mg joints treated with plasma electrolytic oxidation(PEO)coatings and loaded nanocontainers demonstrated sig-nificantly improved corrosion resistance compared to untreated joints.This research highlights the potential of dual-shell nanocontainers,containing both organic and inorganic inhibitors,to offer prolonged corrosion protection,particularly against galvanic corrosion in dissimilar joints.The findings suggest that these synthesized nanocontainers hold promise for various industrial applications,particularly in the context of friction stir welded(FSW)Ti-Mg dissimilar joints,providing valuable insights for the development of advanced materials designed to mitigate corrosion.
基金Project(51405392)supported by the National Natural Science Foundation of ChinaProject(20136102120022)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(3102015ZY023)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ werepresent in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) onTC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilarjoint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strengthand ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from1×10?4 s?1 to 1×10?2 s?1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture atdifferent strain rates.
基金Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the financial support to carry out this investigation through sponsored project No. 22(0615)/13/EMR-II dated 26.02.2013
文摘Joining of dissimilar metals will offer many advantages in transportation sectors such as fuel consumption,weightreduction and emission reduction.However,joining of aluminium(Al)alloys with magnesium(Mg)alloys by fusion welding processis very complicated.Friction stir welding(FSW)is a feasible method to join these two dissimilar alloys.Mixing these two metalstogether in stir zone(SZ)leads to poor corrosion resistance.In this investigation,an attempt has been made to understand thecorrosion resistance of SZ of FSWed dissimilar joints of AA6061Al alloy and AZ31B Mg alloy.Potentiodynamic polarization testwas conducted by varying chloride ion concentration,pH value of the NaCl solution and exposure time.The corroded surfaces wereanalyzed using optical microscopy,scanning electron microscopy and XRD techniques.Of these three factors investigated,exposuretime is found to be the most significant factor to influence the corrosion behaviour of SZ of friction stir welded dissimilar joints ofAl/Mg alloys.
基金supported by the National Key R&D Program of China(2018YFB1107900)the National Natural Science Foundation of China and Civil Aviation Administration of China(U1933129)+1 种基金the Natural Science Foundation of Tianjin City(18JCQNJC04100)the National Natural Science Foundation of China(51575383).
文摘The effect of Zn interlayer on the microstructural evolution and mechanical behavior of dissimilar ultrasonic-spot-welded Al/Cu joints was investigated.The tensile lap shear strength in relation to welding energy was analyzed.The experimental results show that two intermetallic compounds,Cu5Zn8 and Al2Cu,were generated at the interface of the ultrasonic-spotwelded Al/Cu joint with a Zn interlayer.The primary joining mechanisms of the joint included the intermetallic compound bonding and metallic bonding caused by solid shear plastic deformation.Meanwhile,with increasing welding energy,the plastic deformation of the material became more substantial.With increasing welding energy,the tensile lap shear strength of the joints first increased and then decreased for the ultrasonic-spot-welded Al/Cu joints with and without Zn interlayers.Under the energy input of 700 J,the bearing load capacity of the ultrasonic-spot-welded Al/Cu joints with a Zn interlayer improved signifi cantly due to the observed intermetallic compound(Cu5Zn8).
文摘It is essential to understand the weld interface characteristics and mechanical properties of dissimilar joints to improve its quality.This study is aimed at exploring the properties of friction welded magnesium-titanium dissimilar joint using tensile testing coupled with digital image correlation,optical and scanning electron microscopy,x-ray diffraction and microhardness measurements.Microstructurally different regions such as contact zone,dynamic recrystallized zone,thermo-mechanically affected zone,and partially deformed zone in the magnesium side were observed.No discernible regions were observed in the titanium side,as it had not undergone any significant plastic deformation.Phase analysis indicated that the aluminium from the magnesium side diffused toward the weld interface and formed a thin continuous intermetallic layer by reacting with the titanium.Microhardness mapping showed a steep hardness gradient from the titanium to magnesium side.Critical analysis is done on the tensile characteristics of the specimen and the response of the local regions to the deformation process is mapped.
基金The work was supported by the National Key Research and Development Project(2017YFB0304500).
文摘The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the impact wear volume of the joints increased with the increasing number of impact cycles.The main wear mechanisms include pitting wear,mild fatigue wear,delamination wear,and fatigue wear,and plastic deformation was the primary impact wear mechanism.Among them,fatigue wear had the greatest influence on wear volume,while other wear mechanisms had limited effect.The impact wear resistance of the base material was better than that of the heat-affected zone.Normalizing treatment was beneficial to improving the impact wear resistance of welded joints owing to its effect to promote pearlite recovery,grain refinement,and uniform distribution of grains.The martensite generated in the rail welded joints aggravated the impact wear damage to the materials,which should be avoided.
基金supported by the National Natural Science Funds of China(No.52175290 and No.51975090).
文摘A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance.
基金Project (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities,China
文摘The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.
文摘Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change was observed to occur after welding, with rod-like α and β phases in the fusion zone (FZ), equiaxed et phases, fine α laths and β phases in the heat-affected zone (HAZ) of TCl7 side and acicular martensite α' phases+"ghost" α phases in the HAZ of Ti60 side, The microhardness across the joints exhibited an inhomogeneous distribution with the highest hardness of ~404 HV in FZ and the lowest hardness of ~304 HV in base material (BM) of Ti60. All the joints tested in tension fractured at BM of Ti60 side. Fatigue limits of the joints at 107 cycles were 425 MPa at room temperature and 380 MPa at 400 ℃, respectively. Welding micropores were found to be the main source of fatigue crack initiation.
基金Project(51405392)supported by the National Natural Science Foundation of ChinaProject(2019T120954)supported by the China Postdoctoral Science Foundation+1 种基金Project(2018BSHQYXMZZ31)supported by the Shaanxi Provincial Postdoctoral Science Foundation,ChinaProject(3102019MS0404)supported by the Fundamental Research Funds for the Central Universities,China.
文摘The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fusion zone of TC4/TA15 dissimilar welded joints consists of coarsenedβcolumnar crystals that contain mainly acicularα’martensite.The heat affected zone is composed of the initialαphase and the transformedβstructure,and the width of heat affected zone on the TA15 side is narrower than that on the TC4 side.With increasing temperature,the yield strength and ultimate tensile strength of the TC4/TA15 dissimilar welded joints decrease and the highest plastic deformation is obtained at 800°C.The tensile strength of the dissimilar joints with different welding parameters and base material satisfies the following relation(from high to low):TA15 base material>dissimilar joints>TC4 base material.The microhardness of a cross-section of the TC4/TA15 dissimilar joints reaches a maximum at the centre of the weld and is reduced globally after heat treatment,but the microhardness distribution is not changed.An elevated temperature tensile fracture of the dissimilar joints is located on the side of the TC4 base material.Necking occurs during the tensile tests and the fracture characteristics are typical when ductility is present in the material.
基金Projects(51405389,51675435)supported by the National Natural Science Foundation of ChinaProject(3102017ZY005)supported by the Fundamental Research Funds for the Central Universities,China+3 种基金Project(SAST2016043)supported by the Fund of SAST,ChinaProject(20161125002)supported by the Aeronautical Science Foundation of ChinaProject(B08040)supported by the 111 Project,ChinaProjects(2016YFB0701203,2016YFB1100104)supported by the National Key Research and Development Program of China
文摘The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.
基金the support extended by the Centre for Materials Joining & Research (CEMJOR)
文摘The fusion welding of dissimilar heat treatable and non-heat treatable aluminium alloy faced many problems related to solidification. The difficulties can be overcome to achieve the combined beneficial properties of both aluminium alloys using friction stir welding(FSW). The microstructural features and tensile properties of friction stir welded(FSW) similar and dissimilar joints made of AA6061 and AA5086 aluminium alloys were investigated. The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscopy. Microhardness was measured at various zones of the welded joints. The tensile properties of the joints were evaluated and correlated with the microstructural features and microhardness values. The dissimilar joint exhibits a maximum hardness of HV 115 and a joint efficiency of 56%. This was attributed to the defect free stir zone formation and grain size strengthening.
文摘This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.
文摘This investigation is aimed to establish empirical relationships between continuous multi-seam friction stir cladding process parameters (i.e., rotational speed, welding speed and shoulder overlap ratio) and the quality characteristics (bond tensile strength, shear strength and corrosion) of dissimilar magnesiurn-aluminium alloy clad joints. The influence of considered process parameters on the clad properties was reported. Furthermore, multi-criterion optimization procedure was used to obtain ideal processing conditions, which can yield higher interface strength and lower corrosion rate of fabricated composite plate. Results indicate that, the aluminium-rich thin continuous layer, Mg-rich irregular shaped regions consists of A13Mg2 and Al12Mg17 interraetallic compounds and nature of mechanical interlocking has great influence on the joint interface strength. On the other hand, the corrosion resistance of the clad joints is greatly affected by the amount of magnesium mixed with top aluminium sheet during friction stirring. Also, bend testing shows that, the cladded joints exhibit excellent ductility.
文摘The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)was used in three different heat inputs,including 0.73,0.84,and 0.97 kJ/mm.The microstructural investigations of different zones including base metals,weld metal,heat-affected zones and interfaces were performed by optical microscopy and scanning electron microscopy.The mechanical properties were measured by microhardness,tensile and impact tests.It was found that with increasing heat input,the dendrite size and inter-dendritic spacing in the weld metal increased.Also,the amount of delta ferrite in the weld metal was reduced.Therefore,tensile strength and hardness were reduced and impact test energy was increased.The investigation of the interface between AISI 316L base metal and ER316L filler metal showed that increasing the heat input increases the size of austenite grains in the fusion boundary.A transition region was formed at the interface between API X70 steel and filler metals.
基金the support extended by the Centre for Materials Joining & Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India to carry out this research
文摘Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.
文摘The microstructures, the changing rule of carbon-enriched zone, the diffusion behaviors of elements C and Cr, and thecarbide type of 0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints after aging at 500℃ for various times and afterlong-term service in technical practice were investigated by using the optical microscopy electron probe microanalysis,scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that in aging0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints, the main carbides are M_3C and a few carbides are M_7C_3 andM_(23)C_6. The M_3C carbide decomposition and dissolution with increasing aging time or aging temperature and theanti-diffusion of C and Cr cause the decrease and disappearance of the carbon-enriched zone. The results are differentfrom those of the A302/1Cr5Mo dissimilar welded joints in previous studies.
基金the supports provided by the National Natural Science Foundation of China(Grant No.10172046)
文摘In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Nil3 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A 302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.
文摘The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.