The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characteriz...The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characterized by optical microscope(OM),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results showed that the localized corrosion of FSW joint of Al/steel dissimilar metals mainly initiated at the interface transition zone(ITZ).Precipitation of intermetallic compounds(IMCs)and Fe-rich phase particles in ITZ accelerated the corrosion of the FSW joint.This phenomenon has been attributed to distinct corrosion potentials between IMCs and steel,aluminum base metal.The corrosion resistance sequence of IMCs in ITZ is Fe_(3)Al>FeAl>Fe_(2)Al_(5).展开更多
An optical sensing system was constructed to study the coating when joining ahtminium alloy to zinc-coated steel by MIG welding-brazing process. The results showed that the coating fused to form a liquid zinc film on ...An optical sensing system was constructed to study the coating when joining ahtminium alloy to zinc-coated steel by MIG welding-brazing process. The results showed that the coating fused to form a liquid zinc film on surface during process. The Al-Si filler metal reacted with the liquid zinc film to improve the spreadability of filler metal and thus a new method was established to join aluminium alloy and uncoated steel by depositing a mixed layer on steel surface.展开更多
The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the...The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the joints is uneven. Mg alloy welds present a fine equiaxed grain structure. There exists a transition layer consisting mainly of AlFe, AlFe3 and Mg(Fe, Al)2O4 phases at Mg/steel interface, and it is the weakest link in Mg?steel joints. The welding heat input and weld Al content have the significant effect on the joint strength. The joint strength increases with increasing the heat input from 1680 J/cm to 2093 J/cm, due to promoting Mg/steel interface reaction. When weld Al content is increased to 6.20%, the joint strength reaches 192 MPa, 80% of Mg alloy base metal strength. It is favorable to select the suitable welding heat input and weld Al content for improving joint strength.展开更多
Two dissimilar magnesium(Mg)alloy sheets,one with low aluminium(AZ31)and another with high aluminium(AZ91)content,were successfully joined by friction stir welding(FSW).The effect of process parameters on the formatio...Two dissimilar magnesium(Mg)alloy sheets,one with low aluminium(AZ31)and another with high aluminium(AZ91)content,were successfully joined by friction stir welding(FSW).The effect of process parameters on the formation of hot cracks was investigated.A sound metallurgical joint was obtained at optimized process parameters(1400 rpm with 25 mm/min feed)which contained fine grains and distributed β(Mg_(17)Al_(12))phase within the nugget zone.An increasing trend in the hardness measurements has also confirmed more amount of dissolution of aluminium within the nugget zone.A sharp interface between nugget zone and thermo mechanical affected zone(TMAZ)was clearly noticed at the AZ31 Mg alloy side(advancing)but not on the AZ91 Mg alloy side(retreating).From the results it can be concluded that FSW can be effectively used to join dissimilar metals,particularly difficult to process metals such as Mg alloys,and hot cracking can be completely eliminated by choosing appropriate process parameters to achieve sound joint.展开更多
Dissimilar metal joining between 5A02 aluminum alloy and H62 brass sheets was conducted by gas tungsten arc welding with Zn-15% Al and Al-12% Si flux-cored filler wires. The microstructure in the weld and distribution...Dissimilar metal joining between 5A02 aluminum alloy and H62 brass sheets was conducted by gas tungsten arc welding with Zn-15% Al and Al-12% Si flux-cored filler wires. The microstructure in the weld and distribution of major alloying elements in the intelfacial layer were examined, and the tensile strength of the resultant joints was measured. Pores appeared in the weld made with Zn-15% Al flax-cored filler wire, the interracial layer mainly consisted of AlCu phase, and the specimens fractured through the weld with tensile strength of 129 MPa. When Al-12% Si flux-cored filler wire was used, Cu diffused into the weld and Al2 Cu phase formed, and the specimens fractured along the interfacial layer with tensile strength of 122 MPa.展开更多
Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investig...Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investigated. The martensitic transformation occurred and brittle Ti C phase formed near the interface due to C agglomeration, which degraded the joint strength and increased the microhardness at the interface in as-welded state. Feathery and Widmanstatten structure generated near the interface on Ti Al alloy side. After PWHT at 580 °C and 630 °C for 2 h, the sorbite formed and C dispersed at the interface, leading to the increase of the joint strength from 86 MPa in as-welded state to 395 MPa and 330 MPa, respectively. The heat-treated specimen fractured with quasi-cleavage features through the zone 1 mm away from the interface on TiA l alloy side, but the as-welded specimen failed through the interface.展开更多
Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld...Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.展开更多
We report laser cladding of pure titanium on a CoCrMo alloy using directed energy deposition.Using electron microscopy,the microstructural evolution upon varying the process parameters,especially laser power and powde...We report laser cladding of pure titanium on a CoCrMo alloy using directed energy deposition.Using electron microscopy,the microstructural evolution upon varying the process parameters,especially laser power and powder feed rate,was investigated in relation to crack formation.Cladding layers showing dilution rates of more than 5%contained cracks due to the formation of the brittle Co_(2)Ti intermetallic phase.The observed cracks could be ascribed to a mismatch in thermal expansion and a resulting stress of more than 440 MPa acting on the Co_(2)Ti phase,as determined by density functional theory and nanoindentation.Furthermore,an excess laser energy caused chemical inhomogeneity and unmelted Ti powder particles,while a deficient laser energy resulted in a lack of fusion.Neither cracks nor partially melted powders were observed for a powder feed rate of 3 g/min and a laser power of 225–300 W,for which the dilution rate was minimized to less than 5%.For such samples,the cladding layers comprised pureα-Ti and a uniform CoT i interface with Co_(2)Ti islands.展开更多
MPW (magnetic pulse welding) is a solid state joining technology that allows for the generation of strong metallic bonds, even between dissimilar metals. Due to the absence of external heat, critical intermetallic p...MPW (magnetic pulse welding) is a solid state joining technology that allows for the generation of strong metallic bonds, even between dissimilar metals. Due to the absence of external heat, critical intermetallic phases can largely be avoided. In this process, Lorentz forces are utilized for the rapid acceleration of at least one of the two metallic joining partners leading to the controlled high velocity impact between them. The measurement of the collision conditions and their targeted manipulation are the key factors of a successful process development. Optical measuring techniques are preferred, since they are not influenced by the prevalent strong magnetic field in the vicinity of the working coil. In this paper, the characteristic high velocity impact flash during MPW was monitored and evaluated using phototransistors in order to measure the time of the impact. The results are in good accordance with the established PDV (photon Doppler velocimetry) and show a good repeatability. Furthermore, the collision front velocity was investigated using adapted part geometries within a series of tests. This velocity component is one of the key parameters in MPW; its value decreases along the weld zone. With the help of this newly introduced measurement tool, the magnetic pressure distribution or the joining geometry can be adjusted more effectively.展开更多
Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min w...Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 ram. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN ( 15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu20 layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degra- dation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.展开更多
Vacuum brazing of TiAl alloy to 40Cr steel sheets was conducted with newly developed CuTiNiZrV amorphous foils. It was found that a diffusion layer,filler metal and reaction layer existed in the brazed seam. The diffu...Vacuum brazing of TiAl alloy to 40Cr steel sheets was conducted with newly developed CuTiNiZrV amorphous foils. It was found that a diffusion layer,filler metal and reaction layer existed in the brazed seam. The diffusion layer in the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25(at.%) foil was flat and thin,containing Ti19Al6 and Ti2Cu intermetallic compounds; however,the diffusion layer brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil was uneven with bulges,consisting of essentially Ti-based solute solution. The foil with 12.5 at.% V showed inferior spreadability compared to that with 6.25 at.% V at brazing temperature. However,fracture happened along the diffusion layer with 6.25 at.% V foil due to the formation of brittle intermetallic phases,but the joints brazed with 12.5 at.% V foil failed through the TiAl substrate. These results show that designing amorphous alloy with less Ti and more V for brazing TiAl alloy to steel is appropriate.展开更多
基金supported by the Natural Science Foundation of Hebei(Grant No.E2019210292)Education Department of Hebei(Grant No.ZD2019102).
文摘The corrosion performance of aluminum/steel contact and aluminum/steel FSW joint in 3.5 wt.%NaCl solution were analyzed using potentiostatic tests.The post-corrosion microstructure of the welding joint was characterized by optical microscope(OM),scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results showed that the localized corrosion of FSW joint of Al/steel dissimilar metals mainly initiated at the interface transition zone(ITZ).Precipitation of intermetallic compounds(IMCs)and Fe-rich phase particles in ITZ accelerated the corrosion of the FSW joint.This phenomenon has been attributed to distinct corrosion potentials between IMCs and steel,aluminum base metal.The corrosion resistance sequence of IMCs in ITZ is Fe_(3)Al>FeAl>Fe_(2)Al_(5).
基金Acknowledgements The research was sponsored by Project 50905045 supported by the National Natural Science Foundation of China and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology.
文摘An optical sensing system was constructed to study the coating when joining ahtminium alloy to zinc-coated steel by MIG welding-brazing process. The results showed that the coating fused to form a liquid zinc film on surface during process. The Al-Si filler metal reacted with the liquid zinc film to improve the spreadability of filler metal and thus a new method was established to join aluminium alloy and uncoated steel by depositing a mixed layer on steel surface.
文摘The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the joints is uneven. Mg alloy welds present a fine equiaxed grain structure. There exists a transition layer consisting mainly of AlFe, AlFe3 and Mg(Fe, Al)2O4 phases at Mg/steel interface, and it is the weakest link in Mg?steel joints. The welding heat input and weld Al content have the significant effect on the joint strength. The joint strength increases with increasing the heat input from 1680 J/cm to 2093 J/cm, due to promoting Mg/steel interface reaction. When weld Al content is increased to 6.20%, the joint strength reaches 192 MPa, 80% of Mg alloy base metal strength. It is favorable to select the suitable welding heat input and weld Al content for improving joint strength.
文摘Two dissimilar magnesium(Mg)alloy sheets,one with low aluminium(AZ31)and another with high aluminium(AZ91)content,were successfully joined by friction stir welding(FSW).The effect of process parameters on the formation of hot cracks was investigated.A sound metallurgical joint was obtained at optimized process parameters(1400 rpm with 25 mm/min feed)which contained fine grains and distributed β(Mg_(17)Al_(12))phase within the nugget zone.An increasing trend in the hardness measurements has also confirmed more amount of dissolution of aluminium within the nugget zone.A sharp interface between nugget zone and thermo mechanical affected zone(TMAZ)was clearly noticed at the AZ31 Mg alloy side(advancing)but not on the AZ91 Mg alloy side(retreating).From the results it can be concluded that FSW can be effectively used to join dissimilar metals,particularly difficult to process metals such as Mg alloys,and hot cracking can be completely eliminated by choosing appropriate process parameters to achieve sound joint.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China ( Grant No. 50904012 ) and Natural Science Foundation of Liaoning Province (Grant No. 20092152).
文摘Dissimilar metal joining between 5A02 aluminum alloy and H62 brass sheets was conducted by gas tungsten arc welding with Zn-15% Al and Al-12% Si flux-cored filler wires. The microstructure in the weld and distribution of major alloying elements in the intelfacial layer were examined, and the tensile strength of the resultant joints was measured. Pores appeared in the weld made with Zn-15% Al flax-cored filler wire, the interracial layer mainly consisted of AlCu phase, and the specimens fractured through the weld with tensile strength of 129 MPa. When Al-12% Si flux-cored filler wire was used, Cu diffused into the weld and Al2 Cu phase formed, and the specimens fractured along the interfacial layer with tensile strength of 122 MPa.
基金Project(51374048)supported by the National Natural Science Foundation of ChinaProject(2011CB013402)supported by the National Basic Research Program of ChinaProject(AWPT-Z01)supported by the State Key Laboratory of Advanced Welding and Joining,China
文摘Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investigated. The martensitic transformation occurred and brittle Ti C phase formed near the interface due to C agglomeration, which degraded the joint strength and increased the microhardness at the interface in as-welded state. Feathery and Widmanstatten structure generated near the interface on Ti Al alloy side. After PWHT at 580 °C and 630 °C for 2 h, the sorbite formed and C dispersed at the interface, leading to the increase of the joint strength from 86 MPa in as-welded state to 395 MPa and 330 MPa, respectively. The heat-treated specimen fractured with quasi-cleavage features through the zone 1 mm away from the interface on TiA l alloy side, but the as-welded specimen failed through the interface.
基金Project(50974046/E041607) supported by the National Natural Science Foundation of China
文摘Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.
基金the support of the KAIST GCO_(2) RE(Global Center for Open Research with Enterprise)grant funded by the Ministry of Science and ICT(N11200010)National Research Foundation of Korea(NRF)[grant number NRF-2019R1A2C1002165]。
文摘We report laser cladding of pure titanium on a CoCrMo alloy using directed energy deposition.Using electron microscopy,the microstructural evolution upon varying the process parameters,especially laser power and powder feed rate,was investigated in relation to crack formation.Cladding layers showing dilution rates of more than 5%contained cracks due to the formation of the brittle Co_(2)Ti intermetallic phase.The observed cracks could be ascribed to a mismatch in thermal expansion and a resulting stress of more than 440 MPa acting on the Co_(2)Ti phase,as determined by density functional theory and nanoindentation.Furthermore,an excess laser energy caused chemical inhomogeneity and unmelted Ti powder particles,while a deficient laser energy resulted in a lack of fusion.Neither cracks nor partially melted powders were observed for a powder feed rate of 3 g/min and a laser power of 225–300 W,for which the dilution rate was minimized to less than 5%.For such samples,the cladding layers comprised pureα-Ti and a uniform CoT i interface with Co_(2)Ti islands.
文摘MPW (magnetic pulse welding) is a solid state joining technology that allows for the generation of strong metallic bonds, even between dissimilar metals. Due to the absence of external heat, critical intermetallic phases can largely be avoided. In this process, Lorentz forces are utilized for the rapid acceleration of at least one of the two metallic joining partners leading to the controlled high velocity impact between them. The measurement of the collision conditions and their targeted manipulation are the key factors of a successful process development. Optical measuring techniques are preferred, since they are not influenced by the prevalent strong magnetic field in the vicinity of the working coil. In this paper, the characteristic high velocity impact flash during MPW was monitored and evaluated using phototransistors in order to measure the time of the impact. The results are in good accordance with the established PDV (photon Doppler velocimetry) and show a good repeatability. Furthermore, the collision front velocity was investigated using adapted part geometries within a series of tests. This velocity component is one of the key parameters in MPW; its value decreases along the weld zone. With the help of this newly introduced measurement tool, the magnetic pressure distribution or the joining geometry can be adjusted more effectively.
文摘Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 ram. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN ( 15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu20 layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degra- dation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.
基金financially supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,Chinathe National Natural Science Foundation of China (Grant No.51374048)+1 种基金the National Basic Research Program of China ("973 Program",Grant No.2011CB013402)the Fundamental Research Funds for the Central Universities
文摘Vacuum brazing of TiAl alloy to 40Cr steel sheets was conducted with newly developed CuTiNiZrV amorphous foils. It was found that a diffusion layer,filler metal and reaction layer existed in the brazed seam. The diffusion layer in the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25(at.%) foil was flat and thin,containing Ti19Al6 and Ti2Cu intermetallic compounds; however,the diffusion layer brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil was uneven with bulges,consisting of essentially Ti-based solute solution. The foil with 12.5 at.% V showed inferior spreadability compared to that with 6.25 at.% V at brazing temperature. However,fracture happened along the diffusion layer with 6.25 at.% V foil due to the formation of brittle intermetallic phases,but the joints brazed with 12.5 at.% V foil failed through the TiAl substrate. These results show that designing amorphous alloy with less Ti and more V for brazing TiAl alloy to steel is appropriate.