The principle of minimum dissipation rate is applied to tokamak plasmas with energy and helicity balances imposed as two constraints. The analytical solution on toroidal current distribution are derived from the resul...The principle of minimum dissipation rate is applied to tokamak plasmas with energy and helicity balances imposed as two constraints. The analytical solution on toroidal current distribution are derived from the resulting Euler-Lagrangian equation. Three typical forms of current profiles are found for low-aspect-ratio tokamaks like NSTX. One of them decreases with r on equatorial plane, the second peaks in the inner half part on equatorial plane and the third may have a hole or reverse in the central part.展开更多
The generating currents in the generator and the dissipating current at the load are completely different and they are out of phase.The magnitude of those currents is equal and the direction is opposite to each other....The generating currents in the generator and the dissipating current at the load are completely different and they are out of phase.The magnitude of those currents is equal and the direction is opposite to each other.The resistive,inductive and capacitive loads dissipate completely different voltages which concern each of character of these loads.The direction of vectors of generated voltage and dissipated voltage must be drawn opposite to each other in the vector diagram.The vector of consumed voltage at the resistive load and the vector of the current through this load are in phase while the vector of generated voltage of the main source is out of phase.The resistive load consumes the voltage which is generated by the main source.The inductive load consumes the voltage which is induced or generated in the inductor caused by the inductance due to the current flow through the network.The vectors of consumed voltage at the inductive load and the vector of current through this load are in phase while the vector of generated voltage in the inductor caused by the inductance is out of phase.The capacitive load consumes the voltage which is generated at the capacitor caused by the capacitance due to the current flow through the network.The vector of consumed voltage at the capacitive load and the vectors of current through this load are in phase while the vector of generated voltage at the capacitor caused by the capacitance is out of phase.展开更多
文摘The principle of minimum dissipation rate is applied to tokamak plasmas with energy and helicity balances imposed as two constraints. The analytical solution on toroidal current distribution are derived from the resulting Euler-Lagrangian equation. Three typical forms of current profiles are found for low-aspect-ratio tokamaks like NSTX. One of them decreases with r on equatorial plane, the second peaks in the inner half part on equatorial plane and the third may have a hole or reverse in the central part.
文摘The generating currents in the generator and the dissipating current at the load are completely different and they are out of phase.The magnitude of those currents is equal and the direction is opposite to each other.The resistive,inductive and capacitive loads dissipate completely different voltages which concern each of character of these loads.The direction of vectors of generated voltage and dissipated voltage must be drawn opposite to each other in the vector diagram.The vector of consumed voltage at the resistive load and the vector of the current through this load are in phase while the vector of generated voltage of the main source is out of phase.The resistive load consumes the voltage which is generated by the main source.The inductive load consumes the voltage which is induced or generated in the inductor caused by the inductance due to the current flow through the network.The vectors of consumed voltage at the inductive load and the vector of current through this load are in phase while the vector of generated voltage in the inductor caused by the inductance is out of phase.The capacitive load consumes the voltage which is generated at the capacitor caused by the capacitance due to the current flow through the network.The vector of consumed voltage at the capacitive load and the vectors of current through this load are in phase while the vector of generated voltage at the capacitor caused by the capacitance is out of phase.