Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i...Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.展开更多
In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ...In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.展开更多
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
The microphase-separating behaviors of two types of star-diblock copolymers (Ax)4(By)4 and (A^Bg)4 in thin films are studied using the simulation technique of dissipative particle dynamics. A variety of ordered ...The microphase-separating behaviors of two types of star-diblock copolymers (Ax)4(By)4 and (A^Bg)4 in thin films are studied using the simulation technique of dissipative particle dynamics. A variety of ordered mesostructures have been observed and the simulated phase diagrams show obvious symmetries for the (Ax)4(By)a films and asymmetries for the (AxBy)4 films, besides, it is easier for the (Ax)4(By)4 than for the (A^By)4 to carry out microphase separation under the same conditions, which has been recognized in bulk and can be ascribed to the structural difference between the two types of star copolymers. There are some correspondences between the mesostructures formed in the film and those formed in bulk at the same composition fraction. Decreasing the thickness of film and strengthening the A-B repulsion both help the mesostructures enhance the degree of order. Composition fraction dependences of the mean-square radius of gyration in the two types of star copolymer films are almost contrary, which can be attributed to the differences in their respective structures. These findings can provide a guide to designing novel microstructures involving star-diblock copolymers via geometrical confinement.展开更多
Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any pr...Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.展开更多
Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pi...Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array.展开更多
The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods ea...The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods each have a preferential affinity to one of the blocks. Our results suggest that shear not only aligns the orientations of the diblock eopolymer templates and nanorods towards flow direction, but also regulates the distribution of the nanorods within the polymer matrix. Meanwhile, the shear-induced reorientation and morphology transitions of the systems also significantly depend on the nanorod concentration. At certain nanorod concentrations, the competitions between shearinduced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of the composites. For high nanorod concentrations, no morphology transition is observed, but reorientation is present, in which the sheared nanorods are arranged into hexagonal packing arrays. Additionally, the orientation behaviour of nanorods is determined directly by the applied shear, also interfered with by the shear-stretched copolymer molecules.展开更多
We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particul...We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics.展开更多
The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density dis...The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density distribution and a velocity profile close to analytical solution.The density oscillations and slip velocity are intentionally eliminated,and different wall properties disappear in the same analytical solution.This paper develops a new wall model that combines image and frozen particles and a new strategy to emphasize different wall properties especially wettabilities.The strategy first studies the realistic wall-fluid system by molecular dynamics(MD)simulation depending on physical parameters.Then,a DPD simulation is used to match the density and velocity profiles with the new wall model.The obtained DPD parameters can simulate the systems with the same wall and fluid materials.With this method,a simulation of the Poiseuille flow of liquid argon with copper walls is presented.Other walls with super-hydrophilic,hydrophilic,and hydrophobic wettabilities are also simulated.The limitations of the analytical solution and the effect of the wall-fluid interaction are discussed.The results show that the method suggested in this paper can simulate the mesoscale behavior of the microchannel flow related to realistic systems.展开更多
We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-one- dimensional Bose-Einstein condensate with linear gain and three-body recombination loss perturbed by a wea...We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-one- dimensional Bose-Einstein condensate with linear gain and three-body recombination loss perturbed by a weak optical lattice. It is shown that the linear gain can modify the stability of the single dissipative soliton moving in the optical lattice. The collision dynamics of two individual dissipative matter-wave solitons explicitly depend on the linear gain parameter, and they display different dynamical behaviors in both the in-phase and out-of-phase interaction regimes.展开更多
It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simul...It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.展开更多
The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast ...The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast research interests since it was proposed. In the present study, the dynamics of the electric-driven translocation of a homopolymer through a nanopore is investigated by the dissipative particle dynam- ics (DPD), in which the homopolymer is modeled as a worm-like chain (WLC). The DPD simulations show that the polymer chain undergoes conformation changes during the translocation process. The different structures of the polymer in the translocation process, i.e., single-file, double folded, and partially folded, and the induced current block- ades are analyzed. It is found that the current blockades have different magnitudes due to the polymer molecules traversing the pore with different folding conformations. The nanoscale vortices caused by the concentration polarization layers (CPLs) in the vicinity of the sheet are also studied. The results indicate that the translocation of the polymer has the effect of eliminating the vortices in the polyelectrolyte solution. These findings are expected to provide the theoretical guide for improving the nanopore sequencing tech- nique.展开更多
We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, ...We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, P. (Large scale and mesoscopic hy- drodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271-7281 (2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions (CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime, we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters.展开更多
Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and c...Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and coalescence,have been widely studied by using the particle-based method named many-body dissipative particle dynamics(MDPD).However,the detailed information on heat transfer needs further description.This paper develops a modified MDPD with energy conservation(MDPDE)by introducing a temperature-dependent long-term attractive interaction.By fitting or deriving the expressions of the strength of the attractive force,the exponent of the weight function in the dissipative force,and the mesoscopic heat friction coefficient about temperature,we calculate the viscosity,self-diffusivity,thermal conductivity,and surface tension,and obtain the Schmidt number Sc,the Prandtl number P r,and the Ohnesorge number Oh for 273 K to 373 K.The simulation data of MDPDE coincide well with the experimental data of water,indicating that our model can be used to simulate the dynamic behaviors of liquid water.Furthermore,we compare the equilibrium contact angle of droplets wetting on solid surfaces with that calculated from three interfacial tensions by MDPDE simulations.The coincident results not only stand for the validation of Young’s equation at mesoscale,but manifest the reliability of our MDPDE model and applicability to the cases with free surfaces.Our model can be extended to study the multiphase flow withcomplex heat and mass transfer.展开更多
Temperature dependence of microscopic properties in diblock copolymer films has been investigated by dissipative particle dynamics simulations. Results show the relation between mean-square bond length (MSBL) and sy...Temperature dependence of microscopic properties in diblock copolymer films has been investigated by dissipative particle dynamics simulations. Results show the relation between mean-square bond length (MSBL) and system temperature can be described as a quadratic curve. The root-mean-square radius of gyration (RMSGR) and end-end distance (RMSED) increase gradually as the temperature rises and composition fraction changes from 0.1 to 0.5, in which the effect of the former is primary. Especially, the relation between RMSGR and temperature is nearly linear in the confinement-introduced direction. Density distribution of each component in the films can be controlled and adjusted effectively by its interaction with other components and boundaries. Moreover, the changes of system temperature and composition fraction can both affect the density distributions to a certain extent.展开更多
Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still s...Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still suffers from the lack of numerical schemes satisfying all the desired properties such as energy conservation and stability. Similarities between SDPD and dissipative particle dynamics with energy (DPDE) con- servation, which is another coarse-grained model, enable adaptation of recent numerical schemes developed for DPDE to the SDPD setting. In this article, a Metropolis step in the integration of the fluctuation/dissipation part of SDPD is introduced to improve its stability.展开更多
Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics s...Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics simulations. Here,we present a physical information-enhanced graph neural network(PIENet) to simulate and predict the evolution of phase separation. The accuracy of our model in predicting particle positions is improved by 40.3% and 51.77% compared with CNN and SVM respectively. Moreover, we design an order parameter based on local density to measure the evolution of phase separation and analyze the systematic changes with different repulsion coefficients and different Schmidt numbers.The results demonstrate that our model can achieve long-term accurate predictions of order parameters without requiring complex handcrafted features. These results prove that graph neural networks can become new tools and methods for predicting the structure and properties of complex physical systems.展开更多
With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesosco...With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesoscopic dissipative particle dynamics method is used to study themechanism of the crystallization and deposition adsorbed on thewall.The results show that in the absence of water molecules,the paraffin molecules near the substrate are deposited on themetallic surface with a horizontalmorphology,while the paraffin molecules close to the fluid side are arranged in a vertical column morphology.In the emulsified system,more water molecules will be absorbed on the metallic substrate than paraffin molecules,which obstructed the direct interaction between paraffin molecules and solid surface.Therefore,the addition of watermolecules hinders the crystallization of wax near the substrate.Perversely,on the fluid side,water molecules promote the formation of paraffin crystallization.The research in this paper reveals the crystallization mechanism of paraffin wax in oil-water emulsions in the pipeline from the microscopic scale,which provides theoretical support for improving the recovery of wax-containing crude oil and enhancing the transport efficiency.展开更多
Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differe...Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differentiable with locally Lipschitz continuous gradient and bounded from below. In particular when φ is convex, all solutions tend to minimize the potential φ as time tends to infinity and the existence of one bounded trajectory implies the weak convergence of all solutions to equilibrium points.展开更多
The hydrodynamics and mixing during the nonaxisymmetry impingement of a micro-droplet and a sessile droplet of the same fluid are investigated by many-body dissipative particle dynamics(MDPD) simulation.In this work,t...The hydrodynamics and mixing during the nonaxisymmetry impingement of a micro-droplet and a sessile droplet of the same fluid are investigated by many-body dissipative particle dynamics(MDPD) simulation.In this work,the range of the impingement angle(θ_(i)) between the impinging droplet and the sessile droplet is 0°-60° and the contact angle is set as 45° or 124°.The droplets impingement and mixing behavior is analyzed based on the droplet internal flow field,the concentration distribution and the time scale of the decay of the kinetic energy of the impinging droplet.The dimensionless total mixing time(τ_(m)) is calculated by a modified mixing function.With the Weber number(We) ranging from 5.65 to22.7 and the Ohnesorge number(Oh) ranging from 0.136 to 0.214,we find rm hardly changes with We and Oh.Whereas,θ_(i)and surface wettability are found to have a significant effect on τ_(m).We find that θ_(i)has no clear effect on τ_(m)on a hydrophobic surface,while on the hydrophilic surface,τ_(m)increase with the θ_(i).Thus,reducing the impinging angle is a valid method to shorten the τ_(m).展开更多
基金supported by the National Natural Science Foundation of China(22373104 and 22293024)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(21821005)+1 种基金supported by the National Key Research and Development Program of China(2021YFE020527)support by the Distinguished Young Scholars of the National Natural Science Foundation of China(T2222022).
文摘Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.
基金Project supported by the National Natural Science Foundation of China(Nos.11872283 and 2002212)the Sailing Program of Shanghai,China(No.20YF1432800)。
文摘In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
文摘The microphase-separating behaviors of two types of star-diblock copolymers (Ax)4(By)4 and (A^Bg)4 in thin films are studied using the simulation technique of dissipative particle dynamics. A variety of ordered mesostructures have been observed and the simulated phase diagrams show obvious symmetries for the (Ax)4(By)a films and asymmetries for the (AxBy)4 films, besides, it is easier for the (Ax)4(By)4 than for the (A^By)4 to carry out microphase separation under the same conditions, which has been recognized in bulk and can be ascribed to the structural difference between the two types of star copolymers. There are some correspondences between the mesostructures formed in the film and those formed in bulk at the same composition fraction. Decreasing the thickness of film and strengthening the A-B repulsion both help the mesostructures enhance the degree of order. Composition fraction dependences of the mean-square radius of gyration in the two types of star copolymer films are almost contrary, which can be attributed to the differences in their respective structures. These findings can provide a guide to designing novel microstructures involving star-diblock copolymers via geometrical confinement.
文摘Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.
基金Project supported by the National Natural Science Foundation of China(Nos.31370953,10942004,and 91230203)
文摘Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 21074096 and 21104060)
文摘The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods each have a preferential affinity to one of the blocks. Our results suggest that shear not only aligns the orientations of the diblock eopolymer templates and nanorods towards flow direction, but also regulates the distribution of the nanorods within the polymer matrix. Meanwhile, the shear-induced reorientation and morphology transitions of the systems also significantly depend on the nanorod concentration. At certain nanorod concentrations, the competitions between shearinduced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of the composites. For high nanorod concentrations, no morphology transition is observed, but reorientation is present, in which the sheared nanorods are arranged into hexagonal packing arrays. Additionally, the orientation behaviour of nanorods is determined directly by the applied shear, also interfered with by the shear-stretched copolymer molecules.
基金funding support of the U.S.Army Research Laboratory with Cooperative Agreement No.W911NF-12-2-0023
文摘We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics.
文摘The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density distribution and a velocity profile close to analytical solution.The density oscillations and slip velocity are intentionally eliminated,and different wall properties disappear in the same analytical solution.This paper develops a new wall model that combines image and frozen particles and a new strategy to emphasize different wall properties especially wettabilities.The strategy first studies the realistic wall-fluid system by molecular dynamics(MD)simulation depending on physical parameters.Then,a DPD simulation is used to match the density and velocity profiles with the new wall model.The obtained DPD parameters can simulate the systems with the same wall and fluid materials.With this method,a simulation of the Poiseuille flow of liquid argon with copper walls is presented.Other walls with super-hydrophilic,hydrophilic,and hydrophobic wettabilities are also simulated.The limitations of the analytical solution and the effect of the wall-fluid interaction are discussed.The results show that the method suggested in this paper can simulate the mesoscale behavior of the microchannel flow related to realistic systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11547125 and 11465008the Hunan Provincial Natural Science Foundation under Grant Nos 2015JJ4020 and 2015JJ2114the Scientific Research Fund of Hunan Provincial Education Department under Grant No 14A118
文摘We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-one- dimensional Bose-Einstein condensate with linear gain and three-body recombination loss perturbed by a weak optical lattice. It is shown that the linear gain can modify the stability of the single dissipative soliton moving in the optical lattice. The collision dynamics of two individual dissipative matter-wave solitons explicitly depend on the linear gain parameter, and they display different dynamical behaviors in both the in-phase and out-of-phase interaction regimes.
基金This work was supported by the National Natural Science Foundation of China (No.20774036) and the Fok Ying Tung Education Foundation (No.114018).
文摘It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.
基金supported by the National Natural Science Foundation of China(Nos.11272197 and11372175)the Innovation Program of Shanghai Municipality Education Commission,China(No.14ZZ095)
文摘The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast research interests since it was proposed. In the present study, the dynamics of the electric-driven translocation of a homopolymer through a nanopore is investigated by the dissipative particle dynam- ics (DPD), in which the homopolymer is modeled as a worm-like chain (WLC). The DPD simulations show that the polymer chain undergoes conformation changes during the translocation process. The different structures of the polymer in the translocation process, i.e., single-file, double folded, and partially folded, and the induced current block- ades are analyzed. It is found that the current blockades have different magnitudes due to the polymer molecules traversing the pore with different folding conformations. The nanoscale vortices caused by the concentration polarization layers (CPLs) in the vicinity of the sheet are also studied. The results indicate that the translocation of the polymer has the effect of eliminating the vortices in the polyelectrolyte solution. These findings are expected to provide the theoretical guide for improving the nanopore sequencing tech- nique.
文摘We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, P. (Large scale and mesoscopic hy- drodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271-7281 (2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions (CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime, we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters.
基金Project supported by the National Natural Science Foundation of China(Nos.11872283,12002242,11902188,and 12102218)the Shanghai Science and Technology Talent Program(No.19YF1417400)the China Postdoctoral Science Foundation(No.2020M680525)。
文摘Heat and mass transfer during the process of liquid droplet dynamic behaviors has attracted much attention in decades.At mesoscopic scale,numerical simulations of liquid droplets motion,such as impacting,sliding,and coalescence,have been widely studied by using the particle-based method named many-body dissipative particle dynamics(MDPD).However,the detailed information on heat transfer needs further description.This paper develops a modified MDPD with energy conservation(MDPDE)by introducing a temperature-dependent long-term attractive interaction.By fitting or deriving the expressions of the strength of the attractive force,the exponent of the weight function in the dissipative force,and the mesoscopic heat friction coefficient about temperature,we calculate the viscosity,self-diffusivity,thermal conductivity,and surface tension,and obtain the Schmidt number Sc,the Prandtl number P r,and the Ohnesorge number Oh for 273 K to 373 K.The simulation data of MDPDE coincide well with the experimental data of water,indicating that our model can be used to simulate the dynamic behaviors of liquid water.Furthermore,we compare the equilibrium contact angle of droplets wetting on solid surfaces with that calculated from three interfacial tensions by MDPDE simulations.The coincident results not only stand for the validation of Young’s equation at mesoscale,but manifest the reliability of our MDPDE model and applicability to the cases with free surfaces.Our model can be extended to study the multiphase flow withcomplex heat and mass transfer.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.S30109)the Research and Development Special Fundation of Excellent Young Teachers of Universities in Shanghai,the Developmental Foundation of Scientific Technology of Shanghai Universitythe Innovation Foundation of Shanghai University
文摘Temperature dependence of microscopic properties in diblock copolymer films has been investigated by dissipative particle dynamics simulations. Results show the relation between mean-square bond length (MSBL) and system temperature can be described as a quadratic curve. The root-mean-square radius of gyration (RMSGR) and end-end distance (RMSED) increase gradually as the temperature rises and composition fraction changes from 0.1 to 0.5, in which the effect of the former is primary. Especially, the relation between RMSGR and temperature is nearly linear in the confinement-introduced direction. Density distribution of each component in the films can be controlled and adjusted effectively by its interaction with other components and boundaries. Moreover, the changes of system temperature and composition fraction can both affect the density distributions to a certain extent.
基金Project supported by the Agence Nationale de la Recherche(No.ANR-14-CE23-0012(COSMOS))the European Research Council under the European Union’s Seventh Framework Programme(FP/2007-2013)/ERC(No.614492)
文摘Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still suffers from the lack of numerical schemes satisfying all the desired properties such as energy conservation and stability. Similarities between SDPD and dissipative particle dynamics with energy (DPDE) con- servation, which is another coarse-grained model, enable adaptation of recent numerical schemes developed for DPDE to the SDPD setting. In this article, a Metropolis step in the integration of the fluctuation/dissipation part of SDPD is introduced to improve its stability.
基金Project supported by the National Natural Science Foundation of China(Grant No.11702289)the Key Core Technology and Generic Technology Research and Development Project of Shanxi Province,China(Grant No.2020XXX013)。
文摘Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics simulations. Here,we present a physical information-enhanced graph neural network(PIENet) to simulate and predict the evolution of phase separation. The accuracy of our model in predicting particle positions is improved by 40.3% and 51.77% compared with CNN and SVM respectively. Moreover, we design an order parameter based on local density to measure the evolution of phase separation and analyze the systematic changes with different repulsion coefficients and different Schmidt numbers.The results demonstrate that our model can achieve long-term accurate predictions of order parameters without requiring complex handcrafted features. These results prove that graph neural networks can become new tools and methods for predicting the structure and properties of complex physical systems.
基金sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region,Grant No.2023D01C197Performance Incentive Guidance Project of Chongqing Scientific Research Institutions(cstc2022jxjl20016).
文摘With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesoscopic dissipative particle dynamics method is used to study themechanism of the crystallization and deposition adsorbed on thewall.The results show that in the absence of water molecules,the paraffin molecules near the substrate are deposited on themetallic surface with a horizontalmorphology,while the paraffin molecules close to the fluid side are arranged in a vertical column morphology.In the emulsified system,more water molecules will be absorbed on the metallic substrate than paraffin molecules,which obstructed the direct interaction between paraffin molecules and solid surface.Therefore,the addition of watermolecules hinders the crystallization of wax near the substrate.Perversely,on the fluid side,water molecules promote the formation of paraffin crystallization.The research in this paper reveals the crystallization mechanism of paraffin wax in oil-water emulsions in the pipeline from the microscopic scale,which provides theoretical support for improving the recovery of wax-containing crude oil and enhancing the transport efficiency.
基金support by the France-Tunisia cooperation under the auspices of the CNRS/DGRSRT agreement No. 08/R 15-06:Systèmes dynamiques et équationsd'évolutionLaboratoire Jacques-Louis Lions under the auspices of the Fondation Sciences Mathematiques de Paris
文摘Asymptotic behaviour of solutions is studied for some second order equations including the model casex(t) +γx(t) + ↓△φb(x(t)) = h(t) with γ 〉 0 and h ∈ L1(O, +∞; H), φ being continuouly differentiable with locally Lipschitz continuous gradient and bounded from below. In particular when φ is convex, all solutions tend to minimize the potential φ as time tends to infinity and the existence of one bounded trajectory implies the weak convergence of all solutions to equilibrium points.
基金financial support from National Natural Science Foundation of China(22078008,22178014)the Fundamental Research Funds for the Central Universities(XK1802-1)。
文摘The hydrodynamics and mixing during the nonaxisymmetry impingement of a micro-droplet and a sessile droplet of the same fluid are investigated by many-body dissipative particle dynamics(MDPD) simulation.In this work,the range of the impingement angle(θ_(i)) between the impinging droplet and the sessile droplet is 0°-60° and the contact angle is set as 45° or 124°.The droplets impingement and mixing behavior is analyzed based on the droplet internal flow field,the concentration distribution and the time scale of the decay of the kinetic energy of the impinging droplet.The dimensionless total mixing time(τ_(m)) is calculated by a modified mixing function.With the Weber number(We) ranging from 5.65 to22.7 and the Ohnesorge number(Oh) ranging from 0.136 to 0.214,we find rm hardly changes with We and Oh.Whereas,θ_(i)and surface wettability are found to have a significant effect on τ_(m).We find that θ_(i)has no clear effect on τ_(m)on a hydrophobic surface,while on the hydrophilic surface,τ_(m)increase with the θ_(i).Thus,reducing the impinging angle is a valid method to shorten the τ_(m).