期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical modeling of destress blasting for strata separation 被引量:1
1
作者 Petr Konicek Tuo Chen Hani S.Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2238-2249,共12页
Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,s... Destress blasting(DB)implemented along the perimeter of safety pillars is a special application of destressing in coal longwall mining.The goal is to separate relatively more deformed mined areas from safety pillars,such as shaft pillars or cross-cut pillars,to reduce the transfer of high stresses to the protective pillar.This case study aims to numerically simulate selected destress blasts in the Czech part of the Upper Silesian Coal Basin and examine its impact on stress transfer to the safety pillar area.To separate the area between the protective pillar and the longwall(LW),two fans of five 93-mm blast holes(length of 93e100 m)were drilled from the gate roads into the overburden strata.Each set of blast holes was fired separately in two stages without time delay.The explosive charge(gelatin-type of explosive)of each stage is 3450 kg.The two DB stages were fired when the longwall face was approximately 158 m and 152 m away from the blast.A 3D mine-wide model is built and validated with in situ stress measured with hydrofracturing.Mining and destressing in three 5-m thick coal seams are simulated in the region.Numerical modeling of DB is successfully conducted using a rock fragmentation factor a of 0.05 and a stress reduction/dissipation factor β of 0.95.Buffering of transfer of additional stress from the mining area into the safety pillar is evaluated by comparison of yielding volume before and after DB.It is shown that yielding volume drops after DB by nearly 80%in the area of the destressing panel and near the safety shaft pillar. 展开更多
关键词 Rockburst hazard Destress blasting(DB) Strata separation Safety pillar Numerical modeling Fragmentation factor stress dissipation factor Longwall mining
下载PDF
Development of multi-physics numerical simulation model to investigate thermo-mechanical fatigue crack propagation in an autofrettaged gun barrel 被引量:3
2
作者 Naveed Hussain Faisal Qayyum +1 位作者 Riffat Asim Pasha Masood Shah 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1579-1591,共13页
In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical st... In this research,a detailed multi-physics study has been carried out by numerically simulating a solid fractured gun barrel for 20 thermo-mechanical cycles.The numerical model is based on thermal effects,mechanical stress fields and fatigue crack mechanics.Elastic-plastic material data of modified AISI 4340 at temperatures ranging from 25 to 1200℃and at strain rates of 4,16,32 and 48 s^(-1) was acquired from high-temperature compression tests.This was used as material property data in the simulation model.The boundary conditions applied are kept similar to the working gun barrel during continuous firing.A methodology has been provided to define thermo-mechanically active surface-to-surface type interface between the crack faces for a better approximation of stresses at the crack tip.Comparison of results from non-autofrettaged and autofrettaged simulation models provide useful information about the evolution of strains and stresses in the barrel at different points under combined thermo-mechanical loading cycles in both cases.The effect of thermal fatigue under already induced compressive yield due to autofrettage and the progressive degradation of the accumulated stresses due to thermo-mechanical cyclic loads on the internal surface of the gun barrel(mimicking the continuous firing scenario)has been analyzed.Comparison between energy release rate at tips of varying crack lengths due to cyclic thermo-mechanical loading in the non-autofrettaged and autofrettaged gun has been carried out. 展开更多
关键词 Steel AUTOFRETTAGE Gun barrel Crack propagation Thermo-mechanical fatigue Numerical simulation Residual stress dissipation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部