期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Accurate Prediction of Ir-H Bond Dissociation Enthalpies by Density Functional Theory Methods 被引量:1
1
作者 Yi Zhou Dingjia Liu +2 位作者 Yao Fu Haizhu Yu Jing Shi 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2014年第3期269-275,共7页
The iridium hydride complexes have been extensively used in organic reactions,such as oxidation and hydro-genation reactions.In many of these reactions,the dissociation or formation of Ir-H bond plays an important rol... The iridium hydride complexes have been extensively used in organic reactions,such as oxidation and hydro-genation reactions.In many of these reactions,the dissociation or formation of Ir-H bond plays an important role in determining the overall reaction rates and yields.In the present study,the accuracy of different theoretical meth-ods for prediction of Ir-H bond strengths has been examined on the basis of the previously reported Ir-H BDEs of 17 different complexes.Comparing the performance of different DFT functionals(e.g.B3LYP,TPSS,M06),different basis sets(including the different effective core potentials(ECP)on Ir and I atoms,and the total electron basis sets on the other atoms),and different solvation models(SMD,CPCM,and IEFPCM)in solution phase single point calculations,we found that the gas-phase calculation with TPSS/(LanL2DZ:6-31G(d))method is relatively more accurate than the other gas-phase calculation methods,and can well simulate the Ir-H BDEs in low-polarity solvents(such as chlorobenzene and dichloroethane).Finally,efforts were put in analyzing the structure-activity re-lationships between the ligand structure(around Ir center)and the Ir-H BDEs.We wish the present study could benefit future studies on the Ir-H complexes involved organic reactions. 展开更多
关键词 density functional theory Ir-H bond dissociation enthalpy
原文传递
Theoretical Studies on the Reaction Mechanism of 1-Chloroethane with Hydroxyl Radical 被引量:1
2
作者 王丙星 王利 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第6期695-702,共8页
The reaction mechanism of 1-chloroethane with hydroxyl radical has been investigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same t... The reaction mechanism of 1-chloroethane with hydroxyl radical has been investigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same theoretical level. It was found that hydrogen abstraction pathway is the most favorable. There are two hydrogen abstraction pathways with activation barriers of 0.630 and 4.988 kJ/mol, respectively, while chlorine abstraction pathway was not found. It was observed that activation energies have a more reasonable correlation with the reaction enthalpy changes (ΔHr) than with bond dissociation enthalpies (BDE). 展开更多
关键词 bond dissociation enthalpies B3LYP 1-chloroethane hydroxyl radical reaction mechanism
下载PDF
DFT Studies on the Antiradical Potential of Phenolic Compounds 被引量:1
3
作者 Tingting Cao Munan Zhao Chongwei Cui 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2021年第2期28-37,共10页
Phenolic compounds are a class of hazardous substances for human.To study the antiradical potential of a series of phenolic compounds from the aspect of position and substituent type,phenol,o⁃dihydroxybenzene(ODB),m⁃d... Phenolic compounds are a class of hazardous substances for human.To study the antiradical potential of a series of phenolic compounds from the aspect of position and substituent type,phenol,o⁃dihydroxybenzene(ODB),m⁃dihydroxybenzene(MDB),p⁃dihydroxybenzene(PDB),paranitrophenol(PNP),and o⁃chlorophenol(OCP)were selected as typical targets.In addition,to elucidate the degradation discrepancy of phenolic compounds,quantum chemical calculations(QCCs)were obtained using the B3LYP method along with a 6-311G(d,p)basis set.Calculations indicate that phenol,ODB,MDB,and PDB,with electron⁃donating groups,exhibited high antiradical potential,while PNP and OCP,with electron⁃withdrawing groups,exhibited low antiradical potential.The chemical indices calculations show that para⁃compounds and ortho⁃compounds had high antiradical ability.Moreover,phenol,ODB,MDB,and PDB possessed higher bond dissociation enthalpy(BDE)and lower adiabatic ionization potential(AIP)values compared with those of OCP and PNP.Medium effects,even in vacuo,were also taken into account to reveal the antiradical ability of phenolic compounds. 展开更多
关键词 adiabatic ionization potential(AIP) antiradical potential bond dissociation enthalpy(BDE) density functional theory(DFT) Fukui indices phenolic compounds
下载PDF
Why Static O-H Bond Parameters Cannot Characterize the Free Radical Scavenging Activity of Phenolic Antioxidants: ab initio Study
4
作者 Hong Yu ZHANG You Min SUN De Zhan CHEN 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第1期75-78,共4页
The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In com... The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship bt tween O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE. 展开更多
关键词 ANTIOXIDANTS free radical scavenging effect O-H bond dissociation enthalpy O-H bond length O-H bond stretching force constant O-H charge difference O-H Mulliken population QSAR
下载PDF
Theoretical Study on the Antioxidant Activity of Curcumin
5
作者 孙友敏 王若曦 +2 位作者 苑世领 林宪杰 刘成卜 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2004年第8期827-830,共4页
The computational results for curcumin at the B3LYP/6-31G(d,p) level show that the enol form of curcumin is more stable than the diketo form because of an intramolecular hydrogen bond, which extends the conjugation e... The computational results for curcumin at the B3LYP/6-31G(d,p) level show that the enol form of curcumin is more stable than the diketo form because of an intramolecular hydrogen bond, which extends the conjugation effect in the enol chain, formed in the enol structure. Cis-diketone form can not be obtained, presumably due to the strong repulsion between the carbonyl dipoles aligned in parallel. According to the phenolic O—H bond dissociation en- thalpy, curcumin in its most stable form can be suggested to be a relatively good antioxidant. In order to avoid overcoming H-bond interaction and to improve the antioxidant activity of curcumin, a catechol moiety was incor- porated into curcumin for designing a novel antioxidant. It is found that the designed molecule is much more effi- cient to scavenge radical than curcumin, comparable to vitamin E. Moreover, the ionization potential of the de- signed molecule is similar to that of curcumin, indicating that the designed molecule can not display the prooxidant effect. 展开更多
关键词 CURCUMIN density functional theory O—H bond dissociation enthalpy ionization potential anti- oxidant activity
原文传递
Theoretical Elucidation on Different Lipid-Oxidation Potentials of Aminoxyl Antioxidants
6
作者 王兰芬 张红雨 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2003年第12期1669-1672,共4页
To elucidate the different lipid-oxidation potentials of aminoxylantioxidants, a kind of combined density functional theory (DFT) method was employed to calculateC―H bond dissociation enthalpies (BDEs) of a model lin... To elucidate the different lipid-oxidation potentials of aminoxylantioxidants, a kind of combined density functional theory (DFT) method was employed to calculateC―H bond dissociation enthalpies (BDEs) of a model linoleic acid (LH) and O―H BDEs of hydrogenatedaminoxyls. The higher the O―H BDE is, the more potent the aminoxyl to abstract the H-atom from LHand the stronger the LH-oxidation potential. Accordingly, the prooxidant activity differences ofaminoxyls were elucidated by the different O―H BDEs of hydrogenated aminoxyls, which were furtherclarified in terms of distinct electronic effects of the substituents. 展开更多
关键词 AM1 aminoxyl antioxidant density functional theory H-abstraction reaction lipid oxidation O―H bond dissociation enthalpy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部