A spray-drying assisted solid-state method to prepare spherical layer-structured H_(2)TiO_(3) ion sieve(LSTIS)particles is reported herein.The effects of synthesis parameters(calcination temperature,calcination time,a...A spray-drying assisted solid-state method to prepare spherical layer-structured H_(2)TiO_(3) ion sieve(LSTIS)particles is reported herein.The effects of synthesis parameters(calcination temperature,calcination time,and the lithium-titanium molar ratio)on adsorption-desorption performance(the delithiation ratio,titanium dissolution loss,and the adsorption capacity)were investigated.The as-prepared LSTIS exhibited an equilibrium adsorption capacity of 30.08 mg·g^(-1)(average of 25.85 mg·g^(-1) over 5 cycles)and ultra-low titanium dissolution loss of less than 0.12%(average of 0.086%over 5 cycles).The LSTIS showed excellent selectivity toward Li^(+) in Na^(+),K^(+),Mg^(2+),and Ca^(2+) coexisting saline solutions where its adsorption capacity reached 27.45 mg·g^(-1) and the separation factors of Li^(+) over the coexisting cations exceeded 100.The data suggests that the LSTIS is promising to competitively enrich Li^(+) from saline solutions.展开更多
基金financially supported by the Prospective Joint Research Project of Industry,University and Research in Jiangsu Province(BY2016005-11)National Science and Technology Support Plan(No.2013BAE111B03)。
文摘A spray-drying assisted solid-state method to prepare spherical layer-structured H_(2)TiO_(3) ion sieve(LSTIS)particles is reported herein.The effects of synthesis parameters(calcination temperature,calcination time,and the lithium-titanium molar ratio)on adsorption-desorption performance(the delithiation ratio,titanium dissolution loss,and the adsorption capacity)were investigated.The as-prepared LSTIS exhibited an equilibrium adsorption capacity of 30.08 mg·g^(-1)(average of 25.85 mg·g^(-1) over 5 cycles)and ultra-low titanium dissolution loss of less than 0.12%(average of 0.086%over 5 cycles).The LSTIS showed excellent selectivity toward Li^(+) in Na^(+),K^(+),Mg^(2+),and Ca^(2+) coexisting saline solutions where its adsorption capacity reached 27.45 mg·g^(-1) and the separation factors of Li^(+) over the coexisting cations exceeded 100.The data suggests that the LSTIS is promising to competitively enrich Li^(+) from saline solutions.