The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to invest...The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.展开更多
Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous ...Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.展开更多
Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD...Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD)and organic sulfur contents.Even after the recovery of H_(2)S from the sour water by the stripping process,the effluent still contains a high concentration of dissolved organic sulfur(DOS),which can have a huge bad influence.While chemical composition of dissolved organic matter(DOM)in refinery wastewater has been extensively studied,the investigation of recalcitrant DOS from sour waters remains unclear.In the present study,chemical composition of sour water DOMs(especially DOS)was investigated using fluorescence spectroscopy(excitation-emission matrix,EEM)and mass spectrometry,including gas chromatography-mass spectrometry(GC-MS)and high-resolution Orbitrap MS.The GC-MS and EEM results showed that volatile and low-aromaticity compounds were effectively removed during the stripping process,while compounds with high hydrophilicity and humification degree were found to be more recalcitrant.The Orbitrap MS results showed that weak-polar oxygenated sulfur compounds were easier to be removed than oxygenated compounds.However,the effluent still contained significant amounts of sulfur-containing compounds with multiple sulfur atoms,particularly in the form of highly unsaturated and aromatic compounds.The Orbitrap MS/MS results of CHOS-containing compounds from the effluent indicate that the sulfur atoms may exist as sulfonates,disulfide bonds,thioethers.Understanding the composition and structure of sour water DOS is crucial for the development of effective treatment processes that can target polysulfide compounds and minimize their impact on the environment.展开更多
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How st...Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland.展开更多
Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To addres...Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To address this issue,we investigated the spectral characteristics of DOM before and after Typhoon Ewiniar in Zhanjiang B ay,a eutrophic semi-enclosed bay in the northwestern South China Sea.The results revealed that intense microbial decomposition of DOM occurred during the pre-typhoon period because high nutrient inputs facilitated the mobilization of DOM in the bay.However,the intrusion of external seawater induced by the typhoon diluted the nutrient levels in Zhanjiang B ay,reducing the impact of microbial decomposition on DOM during the post-typhoon perio d.Nevertheless,the net addition of DOM occurred in Zhanjiang Bay during the post-typhoon period,possibly because of the decomposition of particulate organic matter(POM) and desorption of particulate matter.In addition,an increase in apparent oxygen utilization,a decrease in DO saturation and the reduced level of Chl a indicated that organic matter(OM) decomposition was enhanced and OM decomposition shifted to POM decomposition in Zhanjiang Bay after the typhoon.Overall,our study highlighted the shift in the intense OM decomposition from DOM to POM decomposition before and after typhoons in eutrophic bays,providing new insights into the response of typhoons to biogeo chemistry.展开更多
As a river with more than 3000 reservoirs in its watershed,the Yellow River has been affected by dams not only on the sediment load,but also on the water quality.Water-sediment regulation scheme(WSRS),which has been c...As a river with more than 3000 reservoirs in its watershed,the Yellow River has been affected by dams not only on the sediment load,but also on the water quality.Water-sediment regulation scheme(WSRS),which has been carried out annually in the Yellow River since 2002,is a typical human activity affecting river water quality.Chromophoric dissolved organic matter(CDOM)in river is susceptible to changes in ecological and environmental conditions as well as human activities.Here,we report variations in dissolved organic carbon concentrations,compositions and sources of CDOM in time series samples in the lower Yellow River during WSRS.In addition,a parallel factor fluorescence analysis(PARAFAC)method is applied to identify different fluorescent components in water samples during WRSR,showing four major components including tryptophan-like component(C1),microbial humic-like component(C2),terrestrial humic-like component(C3)and tyrosine-like component(C4).In general,C1 increased after water regulation,while C2 and C3 increased after sediment regulation,indicating that the water and sediment released by the dam have different effects on CDOM compositions.Under the impacts of the dam,source of CDOM in the lower Yellow River is mainly autochthonous related to microbial activities,and is regulated by the terrestrial input during WSRS period.Sediment resuspension inhibits microbial activities and reduces the production of autochthonous CDOM.Overall,human activities especially WSRS,as exemplified here,significantly alter the quality and quantity of CDOM in the lower Yellow River,affecting CDOM dynamics and biogeochemical processes in the estuarine environment.展开更多
Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly unders...Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly understood. To understand how DOM composition varied with urbanization, fluorescence excitation-emission matrices (EEMs) were determined for urban and non-urban waters from upstream to downstream sites along three adjacent coastal watersheds that flow into the Mediterranean Sea. Two humic DOM fluorescent components (humic-like and fulvic-like peaks) and two proteinic components (tyrosine-like and tryptophane-like peaks) were identified by EEM fluorescence. The results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land uses surrounding each body of water. Urban waters show a higher DOM fluorescence index (FI), the highest fluorescence intensity of protein-like manifested also by BIX values, and a lower value of the humification index (HIX) than non-urban waters which were dominated by allochthonous inputs. In addition, the EEM was compared in dry and wet season where higher DOM amounts and FI appeared in summer due to autochthonous production coming from algae growth compared to allochthonous input from rainfall dominated in wet season. The concentration of DOC increased from upstream to downstream for the three rivers, especially Beirut River. The increase in DOC values was observed in both dry and wet seasons by 39 and 19 times respectively compared to upstream (0.93 - 0.91 mgC/L).展开更多
Goethite, a typical iron-containing monomineral in red mud, was synthesized under the simulated Bayer digestion condition during the alumina production. The effects of dissolved organic compounds including sodium ...Goethite, a typical iron-containing monomineral in red mud, was synthesized under the simulated Bayer digestion condition during the alumina production. The effects of dissolved organic compounds including sodium formate, sodium acetate, sodium oxalate, sodium salicylate and disodium phthalate on the settling performance of goethite slurries were studied. The settling performance of the slurries was also investigated with the addition of self-made hydroxamated polyacrylamide flocculant (HCPAM). The adsorption mechanism of dissolved organic compounds on the goethite surfaces was studied by FT-IR and XPS, respectively. The results show that the addition of organic compounds lowers the settling performance of the slurries and a deterioration in settling performance is observed in the order of sodium oxalate 〉 sodium salicylate (~ disodium phthalate) 〉 sodium formate 〉 sodium acetate. Moreover, HCPAM can efficiently eliminate the negative effects of sodium formate, sodium acetate and sodium oxalate on the settling performance of the goethite slurries, but it can only partially improve the settling performance of the goethite slurries containing sodium salicylate or disodium phthalate. FT-IR and XPS results show that these organic compounds are chemically adsorbed on the goethite surface.展开更多
By using the ultraviolet absorption spectrum,the fluorescence spectrum and three dimensional fluorescence spectra,the composition of dissolved organic matter(DOM) and the humification degree,etc.in the sediment of hyd...By using the ultraviolet absorption spectrum,the fluorescence spectrum and three dimensional fluorescence spectra,the composition of dissolved organic matter(DOM) and the humification degree,etc.in the sediment of hydro-fluctuation belt(Yunyang part) were analyzed.The relationship between the test parameters and the pollution degree in the region was discussed.The research results of UV spectrum data E3/E4 showed that in 4 sampling sites which included Huangshi Town,Gaoyang Town,Shuangjiang Town and Quma Town,the humification degree in the sediment of hydro-fluctuation belt in Shuangjiang Town sampling site was lower,and the aromaticity was smaller.Moreover,the effect of human factor was comparatively smaller.The fluorescence index value which represented the source of humus in DOM was 1.62-1.88.It showed that the biological and terrestrial source both existed.Three dimensional spectra results showed that the pollution degrees in 4 sampling sites were all smaller,and some prevention measures should be taken early.展开更多
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtrop...Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two planta- tions of Schima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 -N, NH4 -N and total dissolved N (TDN). DON was calculated by subtracting NO3 -N and NH4 -N from TDN. The results - + - + showed that the precipitation had a mean DOC concentration of 1.7 mg·L-1 and DON concentration of 0.13 mg·L-1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L-1 in the SS and 10.3 and 0.19 mg·L-1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L-1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L-1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipita- tion tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September-November period.展开更多
The retrieval of dissolved organic carbon (DOC) distribution by remote sensing is mainly based on the em- pirical relationship of DOC concentration and colored dissolved organic matter (CDOM) concentration in many...The retrieval of dissolved organic carbon (DOC) distribution by remote sensing is mainly based on the em- pirical relationship of DOC concentration and colored dissolved organic matter (CDOM) concentration in many literatures. To investigate the nature of this relationship, the distributions and mixing behaviors of DOC and CDOM are reviewed in the world's major estuaries and bays. It is found that, generally, the C- DOM concentration is well correlated with the salinity in most estuaries, while DOC usually shows a non- conservative behavior which leads to a weak correlation between the DOC concentration and the CDOM concentration. To establish a good satellite reversion of the DOC concentration, the East China Sea(ECS) was taken as an example, and the mixing behavior of DOC and CDOM as well as the influence of biogeo- chemical processes were analyzed except for the physical mixing process with the data from late autumn (November, 2010) and winter (December, 2009) cruises. In the two ECS cruises, the CDOM concentration was found to be tightly correlated with the salinity, influenced little by the photochemical or biological pro- cesses. The data from the winter cruise show that DOC followed a conservative mixing along the salinity gradient, while in the late autumn cruise it was significantly affected by the biological activities, resulting in a poor correlation between the DOC and the CDOM. Accordingly, an improved DOC algorithm (CSDM) was proposed: when the biological influence was significant (Chl a greater than 0.8 μg/dm3), DOC was retrieved by the conservative and biological model, and if the conservative mixing was dominant (Chl a less than 0.8 μg/dm3), the direct DOC concentration and CDOM concentration relationship was used. Based on the pro- posed algorithm, a reasonable DOC distribution for the ECS from satellite was obtained in this study, and the proposed method can be applied to the other large river-dominant marginal sea.展开更多
Salt marshes are research hotspots of the carbon cycle in coastal zones because large amounts of atmospheric carbon dioxide is fi xed by salt marshes vegetation and stored in its biomass and soil.Dissolved organic car...Salt marshes are research hotspots of the carbon cycle in coastal zones because large amounts of atmospheric carbon dioxide is fi xed by salt marshes vegetation and stored in its biomass and soil.Dissolved organic carbon(DOC)in submarine groundwater(well water and pore water)in salt marshes plays an important role in advective exchange between the salt marshes and coastal waters.However,the molecular characteristics of DOC in salt marsh groundwater are poorly understood because of the complex DOC structures and hydrodynamic process.In this study,fl uorescent components and refractory DOC(RDOC)in submarine groundwater from a salt marsh(Chongming Island,China)and adjacent coastal water were characterized by fl uorescence spectroscopy and nuclear magnetic resonance spectroscopy.The fl uorescent components identifi ed by parallel factor analysis indicated that humic-like substances dominated the chromophoric dissolved organic matter in the submarine groundwater.The chromophoric dissolved organic matter and dissolved organic matter in the submarine groundwater had non-conservative behaviors because of additions from terrestrial humic substances.The nuclear magnetic resonance spectra indicated that bioactive substances(carbohydrates)contributed only 13.2%-14.8%of the dissolved organic matter in the submarine groundwater but carboxyl-rich alicyclic molecules(CRAMs),the main components of RDOC,contributed 64.5%of the dissolved organic matter.Carbohydrates and CRAMs contributed 16.4%and 61.7%of the dissolved organic matter in the coastal water,similar to the contributions for submarine groundwater.The DOC concentration in submarine groundwater was 386±294μmol/L,which was signifi cantly higher than that in coastal water(91±19μmol/L).The high DOC concentrations and>60%relative RDOC content suggested that submarine groundwater may be an important source of RDOC to coastal seawater.This information will be helpful for estimating the climate eff ects of salt marsh blue carbon.展开更多
The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and muni...The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and municipal sewage along the eastern coast of the bay was clearly evident as CDOM level- s (defined as a30s), and dissolved organic carbon (DOC) concentrations were well correlated with salinity during all the cruises. Moreover, DOC concentrations were significantly correlated with chlorophyll a con- centrations in the surface microlayer as well as in the subsurface water. The concentrations of DOC and CDOM displayed a gradually decreasing trend from the northwestern and eastern coast to the central hay, and the values and gradients of their concentrations on the eastern coast were generally higher than those on the western coast. In addition, CDOM and DOC levels were generally higher in the surface microlayer than in the subsurface water. In comparison with DOC, CDOM exhibited a greater extent of enrichment in the microlayer in each cruise, with average enrichment factor (EF) values of 1.38 and 1.84, respectively. Four fluorescent components were identified from the surface microlayer and subsurface water samples and could be distinguished as peak A, peak T, peak B and peak M. For all the cruises, peak A levels were higher in the surface microlayer than in the subsurface water. This pattern of variation might be attributed to the terrestrial input.展开更多
The distributions of estuarine colored dissolved organic matter(CDOM)are the combined results of physicalbiogeochemical processes.Remote sensing is needed to monitor highly dynamically estuarine CDOM.Using in situ d...The distributions of estuarine colored dissolved organic matter(CDOM)are the combined results of physicalbiogeochemical processes.Remote sensing is needed to monitor highly dynamically estuarine CDOM.Using in situ data from four seasonal cruises,an algorithm is developed to estimate CDOM absorption coefficient at 400nm(aCDOM(400))in the Zhujiang(Pearl River)Estuary(ZJE).The algorithm uses band ratios of Rrs(667)/Rrs(443)and Rrs(748)/Rrs(412).By applying it to moderate resolution imaging spectroradiometer onboard Aqua satellite(MODIS/Aqua)data from 2002 to 2014,seasonal climatology aCDOM(400)in the ZJE is calculated.CDOM distributions are majorly influenced by water discharge from the Zhujiang River and underwater topography.Along the section vertical to a water depth gradient,the seasonal aCDOM(400)exponentially decreased(y=aebx,b〈0),but with great differences among seasons.Riverine fresh water is the primary source of CDOM in the ZJE.Fulvic acid fraction decreases with increasing salinity.Using developed algorithms,conservative CDOM mixing equation,and river discharge,effective riverine end-member concentration and flux of dissolved organic carbon(DOC)in summer and winter from 2002 to 2014 are first estimated from the MODIS/Aqua data.Both effective riverine end-member DOC concentration and flux are positively related to the river discharge,significantly in summer with R-2 of 0.698 for concentration and 0.965 7 for flux.展开更多
With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutra...With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB) and hydrophilic neutrals (HIN). Those fractions were characterized by high performance size exclusion chromatography, fluorescence spectroscopy and UV absorbance. Among the 6 fractions, FA was predominant and accounted for 51% of the total DOM. The weight-average (Mw) and number-averaged (Mn) molecular weight of these fractions ranged from 1688 to 2355 Da and from 1338 to 1928 Da, respectively. A strong correlation was observed between specific UV absorbance at 280 nm, E2/E3 (absorbance at 250 nm to 365 nm), and the molecular weight for DOM fractions. UV-Vis fulvic-like fluorescence peaks were found in all fractions. Proteinlike fluorescence peaks existed in HON may indicate that microbial activity was severely in Lake Hongfeng. There was a significant relationship between fluorescence intensities and specific UV absorbance at 254 nm for those DOM fractions, suggesting their similar luminescence characteristics. The values of fluorescence index (f450/500) indicated that hydrophobic fractions may derive from terrestrial sources, and the hydrophilic fractions from microbial and terrestrial origins. Those results suggest that there were inter-relationships between molecular weight, fluorescence and absorbance characteristics, and also subtle consistencies between the hydrophilic and hydrophobic properties and the sources for these 6 fractions from Lake Hongfeng.展开更多
The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic ac...The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.展开更多
This study investigated the potential role of soil colloids and dissolved organic matter (DOM) in transporting Cd through in situ undisturbed paddy soil monoliths. Brilliant Blue was used as a tracer to assess the e...This study investigated the potential role of soil colloids and dissolved organic matter (DOM) in transporting Cd through in situ undisturbed paddy soil monoliths. Brilliant Blue was used as a tracer to assess the effect of preferential flow on Cd down migration. Experimental results showed that deep penetration of Cd and Brilliant Blue into the soil profile took place due to the preferential flow through macropores, mainly earthworm channels, with much of chemicals thus bypassing the soil matrix. Dye tracer and Cd distribution within the soil matrix was fairly restricted to several centimeters. Colloid restrained the migration of both dye and Cd in the matrix and preferential flow area. DOM facilitated the transport of Cd and Brilliant Blue in matrix and macropores by about 10 cm over that of the control. Pearson's is correlation analysis revealed strong associations between Brilliant Blue concentrations, exchangeable Cd and total Cd concentrations in three studied plots indicating that they had taken the same preferential flow pathway.展开更多
Effects of dissolved organic matter (DOM) on adsorption and desorption of Hg were investigated in two kinds of soils, Xanthi-Udic Ferralosols (XUF) and Typic Purpli-Udic Cambosols (TPUC). The DOM was obtained from hum...Effects of dissolved organic matter (DOM) on adsorption and desorption of Hg were investigated in two kinds of soils, Xanthi-Udic Ferralosols (XUF) and Typic Purpli-Udic Cambosols (TPUC). The DOM was obtained from humus soil (DOMH), rice straw (DOMR), and pig manure (DOMP). The presence of DOM obviously reduced Hg maximum adsorption capacity with up to 40% decreases over the control, being an order of DOMH (250.00 mg/kg)< DOMR (303.03 mg/kg) < DOMP (322.58 mg/kg) < CK (control 416.67 mg/kg) for the...展开更多
Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of ...Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of DOM in red paddy soil have not been reported yet. A long-term green manure experiment established in 1982 was utilized to test the DOM contents in different treatments, and the spectral characteristics of DOM were investigated by using ultraviolet-visible(UV-Vis) spectrometry and Fourier transform infrared(FTIR) spectrometry. The experiment included four cropping systems: ricerice-milk vetch(RRV), rice-rice-rape(RRP), rice-rice-ryegrass(RRG) and rice-rice-winter fallow(RRF), among them, milk vetch, rape, and ryegrass are popular winter green manure species in southern China. The results showed that the content of dissolved organic carbon(DOC), which is widely used to estimate the concentration of DOM, was significantly promoted after the incorporation of green manures compared with the other sampling stages. The contents of aromatic groups and the degree of humification of DOM increased in RRV and RRP, suggesting more complex compositions of the soil DOM after long-term application of milk vetch and rape. The contents of phenol, alcohol and carboxylic acid group at the mature stage of early rice were significantly higher than those at the stage of after green manures turned over, especially for the RRV treatment. The absorption ratio of FTIR indicated that winter plantation of rape increased the aromatic-C/aliphatic-C ratio, and ryegrass increased the aromatic-C/carboxyl-C ratio. In conclusion, long-term planting of milk vetch and rape as green manures increased the degree of aromaticity, humification and average molecular weight of DOM, and made the DOM more stable in red paddy soil.展开更多
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solu...Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.展开更多
基金funded by the National Natural Science Foundation of China(Grant nos.42276255 and 41976227)project“Impact and Response of Antarctic Seas to Climate Change,IRASCC 2020-2022”(Grant nos.01-01-02A and 02-02-05).
文摘The Southern Ocean is an important carbon sink pool and plays a critical role in the global carbon cycling.The Amundsen Sea was reported to be highly productive in inshore area in the Southern Ocean.In order to investigate the influence of transparent exopolymer particles(TEP)on the behavior of dissolved organic carbon(DOC)in this region,a comprehensive study was conducted,encompassing both open water areas and highly productive polynyas.It was found that microbial heterotrophic metabolism is the primary process responsible for the production of humic-like fluorescent components in the open ocean.The relationship between apparent oxygen utilization and the two humic-like components can be accurately described by a power-law function,with a conversion rate consistent with that observed globally.The presence of TEP was found to have little impact on this process.Additionally,the study revealed the accumulation of DOC at the sea surface in the Amundsen Sea Polynya,suggesting that TEP may play a critical role in this phenomenon.These findings contribute to a deeper understanding of the dynamics and surface accumulation of DOC in the Amundsen Sea Polynya,and provide valuable insights into the carbon cycle in this region.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0605)the National Natural Science Foundation of China(41971080)the support of Youth Innovation Promotion Association CAS(2021429)。
文摘Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system.Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments.Despite its importance,we still lack systematic understanding for dissolved organic carbon(DOC)in several aspects including exact chemical composition and physical interactions with microorganisms,glacier meltwater.This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission,terrestrial,and biogenic sources.We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings.Results indicate that DOC in snow/ice is made up of aromatic protein-like species,fulvic acid-like materials,and humic acid-like materials.Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive.Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area.Owing to prevailing global warming and projected increase in carbon emission,the glacial DOC is expected to release,which will have strong underlying impacts on cryosphere ecosystem.The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions.A new compilation of globally distributed work is required,including large-scale measurements of glacial DOC over high-altitude cryosphere regions,to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.
基金supported by the National Natural Science Foundation of China(42003059)State Key Laboratory of Coal Mining and Clean Utilization(2021-CMCU-KF009)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC003)。
文摘Refinery sour water primarily originates from the tops of towers in various units and coker condensate,and cannot be discharged directly to a wastewater treatment plant due to high levels of chemical oxygen demand(COD)and organic sulfur contents.Even after the recovery of H_(2)S from the sour water by the stripping process,the effluent still contains a high concentration of dissolved organic sulfur(DOS),which can have a huge bad influence.While chemical composition of dissolved organic matter(DOM)in refinery wastewater has been extensively studied,the investigation of recalcitrant DOS from sour waters remains unclear.In the present study,chemical composition of sour water DOMs(especially DOS)was investigated using fluorescence spectroscopy(excitation-emission matrix,EEM)and mass spectrometry,including gas chromatography-mass spectrometry(GC-MS)and high-resolution Orbitrap MS.The GC-MS and EEM results showed that volatile and low-aromaticity compounds were effectively removed during the stripping process,while compounds with high hydrophilicity and humification degree were found to be more recalcitrant.The Orbitrap MS results showed that weak-polar oxygenated sulfur compounds were easier to be removed than oxygenated compounds.However,the effluent still contained significant amounts of sulfur-containing compounds with multiple sulfur atoms,particularly in the form of highly unsaturated and aromatic compounds.The Orbitrap MS/MS results of CHOS-containing compounds from the effluent indicate that the sulfur atoms may exist as sulfonates,disulfide bonds,thioethers.Understanding the composition and structure of sour water DOS is crucial for the development of effective treatment processes that can target polysulfide compounds and minimize their impact on the environment.
基金supported by the National Key Research and Development Project of China (2022YFD1601102)the Key R&D Plan of Heilongjiang Province, China (JD22B002)+1 种基金the Program on Industrial Technology System of National Soybean, China (CARS-04-PS17)the UNDP Project, China (cpr/21/401) and the National Natural Science Foundation of China (41771284)
文摘Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland.
基金The National Natural Science Foundation of China under contract Nos 42276047, 92158201 and U1901213the Entrepreneurship Project of Shantou under contract No.2021112176541391the Scientific Research Start-Up Foundation of Shantou University under contract No.NTF20006。
文摘Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To address this issue,we investigated the spectral characteristics of DOM before and after Typhoon Ewiniar in Zhanjiang B ay,a eutrophic semi-enclosed bay in the northwestern South China Sea.The results revealed that intense microbial decomposition of DOM occurred during the pre-typhoon period because high nutrient inputs facilitated the mobilization of DOM in the bay.However,the intrusion of external seawater induced by the typhoon diluted the nutrient levels in Zhanjiang B ay,reducing the impact of microbial decomposition on DOM during the post-typhoon perio d.Nevertheless,the net addition of DOM occurred in Zhanjiang Bay during the post-typhoon period,possibly because of the decomposition of particulate organic matter(POM) and desorption of particulate matter.In addition,an increase in apparent oxygen utilization,a decrease in DO saturation and the reduced level of Chl a indicated that organic matter(OM) decomposition was enhanced and OM decomposition shifted to POM decomposition in Zhanjiang Bay after the typhoon.Overall,our study highlighted the shift in the intense OM decomposition from DOM to POM decomposition before and after typhoons in eutrophic bays,providing new insights into the response of typhoons to biogeo chemistry.
基金supported by the National Natural Science Foundation of China(Nos.41876077,41376085).
文摘As a river with more than 3000 reservoirs in its watershed,the Yellow River has been affected by dams not only on the sediment load,but also on the water quality.Water-sediment regulation scheme(WSRS),which has been carried out annually in the Yellow River since 2002,is a typical human activity affecting river water quality.Chromophoric dissolved organic matter(CDOM)in river is susceptible to changes in ecological and environmental conditions as well as human activities.Here,we report variations in dissolved organic carbon concentrations,compositions and sources of CDOM in time series samples in the lower Yellow River during WSRS.In addition,a parallel factor fluorescence analysis(PARAFAC)method is applied to identify different fluorescent components in water samples during WRSR,showing four major components including tryptophan-like component(C1),microbial humic-like component(C2),terrestrial humic-like component(C3)and tyrosine-like component(C4).In general,C1 increased after water regulation,while C2 and C3 increased after sediment regulation,indicating that the water and sediment released by the dam have different effects on CDOM compositions.Under the impacts of the dam,source of CDOM in the lower Yellow River is mainly autochthonous related to microbial activities,and is regulated by the terrestrial input during WSRS period.Sediment resuspension inhibits microbial activities and reduces the production of autochthonous CDOM.Overall,human activities especially WSRS,as exemplified here,significantly alter the quality and quantity of CDOM in the lower Yellow River,affecting CDOM dynamics and biogeochemical processes in the estuarine environment.
文摘Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly understood. To understand how DOM composition varied with urbanization, fluorescence excitation-emission matrices (EEMs) were determined for urban and non-urban waters from upstream to downstream sites along three adjacent coastal watersheds that flow into the Mediterranean Sea. Two humic DOM fluorescent components (humic-like and fulvic-like peaks) and two proteinic components (tyrosine-like and tryptophane-like peaks) were identified by EEM fluorescence. The results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land uses surrounding each body of water. Urban waters show a higher DOM fluorescence index (FI), the highest fluorescence intensity of protein-like manifested also by BIX values, and a lower value of the humification index (HIX) than non-urban waters which were dominated by allochthonous inputs. In addition, the EEM was compared in dry and wet season where higher DOM amounts and FI appeared in summer due to autochthonous production coming from algae growth compared to allochthonous input from rainfall dominated in wet season. The concentration of DOC increased from upstream to downstream for the three rivers, especially Beirut River. The increase in DOC values was observed in both dry and wet seasons by 39 and 19 times respectively compared to upstream (0.93 - 0.91 mgC/L).
基金Projects(51174231,51134007)supported by the National Natural Science Foundation of China
文摘Goethite, a typical iron-containing monomineral in red mud, was synthesized under the simulated Bayer digestion condition during the alumina production. The effects of dissolved organic compounds including sodium formate, sodium acetate, sodium oxalate, sodium salicylate and disodium phthalate on the settling performance of goethite slurries were studied. The settling performance of the slurries was also investigated with the addition of self-made hydroxamated polyacrylamide flocculant (HCPAM). The adsorption mechanism of dissolved organic compounds on the goethite surfaces was studied by FT-IR and XPS, respectively. The results show that the addition of organic compounds lowers the settling performance of the slurries and a deterioration in settling performance is observed in the order of sodium oxalate 〉 sodium salicylate (~ disodium phthalate) 〉 sodium formate 〉 sodium acetate. Moreover, HCPAM can efficiently eliminate the negative effects of sodium formate, sodium acetate and sodium oxalate on the settling performance of the goethite slurries, but it can only partially improve the settling performance of the goethite slurries containing sodium salicylate or disodium phthalate. FT-IR and XPS results show that these organic compounds are chemically adsorbed on the goethite surface.
基金Supported by Talent Introduction Talent Plan of Chongqing ThreeGorge University(2007-SXXYRC-006)Accented Term of ChongqingThree Gorge University(10ZD-14)+1 种基金Special Term of National Water Body Pollution Control and Treatment Major Project(2009ZX07104-003-02)Special Term of National Science and Technology Supportm Plan Major Project(2008BAD98B04)
文摘By using the ultraviolet absorption spectrum,the fluorescence spectrum and three dimensional fluorescence spectra,the composition of dissolved organic matter(DOM) and the humification degree,etc.in the sediment of hydro-fluctuation belt(Yunyang part) were analyzed.The relationship between the test parameters and the pollution degree in the region was discussed.The research results of UV spectrum data E3/E4 showed that in 4 sampling sites which included Huangshi Town,Gaoyang Town,Shuangjiang Town and Quma Town,the humification degree in the sediment of hydro-fluctuation belt in Shuangjiang Town sampling site was lower,and the aromaticity was smaller.Moreover,the effect of human factor was comparatively smaller.The fluorescence index value which represented the source of humus in DOM was 1.62-1.88.It showed that the biological and terrestrial source both existed.Three dimensional spectra results showed that the pollution degrees in 4 sampling sites were all smaller,and some prevention measures should be taken early.
文摘Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two planta- tions of Schima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 -N, NH4 -N and total dissolved N (TDN). DON was calculated by subtracting NO3 -N and NH4 -N from TDN. The results - + - + showed that the precipitation had a mean DOC concentration of 1.7 mg·L-1 and DON concentration of 0.13 mg·L-1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L-1 in the SS and 10.3 and 0.19 mg·L-1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L-1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L-1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipita- tion tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September-November period.
基金The National Basic Research Program of China (973 Program) under contract No.2009CB421202the Public Science and Technology Research Funds Projects of Ocean of China under contract No. 200905012the National Natural Science Foundation of China under contract Nos 40976110 and 40706061
文摘The retrieval of dissolved organic carbon (DOC) distribution by remote sensing is mainly based on the em- pirical relationship of DOC concentration and colored dissolved organic matter (CDOM) concentration in many literatures. To investigate the nature of this relationship, the distributions and mixing behaviors of DOC and CDOM are reviewed in the world's major estuaries and bays. It is found that, generally, the C- DOM concentration is well correlated with the salinity in most estuaries, while DOC usually shows a non- conservative behavior which leads to a weak correlation between the DOC concentration and the CDOM concentration. To establish a good satellite reversion of the DOC concentration, the East China Sea(ECS) was taken as an example, and the mixing behavior of DOC and CDOM as well as the influence of biogeo- chemical processes were analyzed except for the physical mixing process with the data from late autumn (November, 2010) and winter (December, 2009) cruises. In the two ECS cruises, the CDOM concentration was found to be tightly correlated with the salinity, influenced little by the photochemical or biological pro- cesses. The data from the winter cruise show that DOC followed a conservative mixing along the salinity gradient, while in the late autumn cruise it was significantly affected by the biological activities, resulting in a poor correlation between the DOC and the CDOM. Accordingly, an improved DOC algorithm (CSDM) was proposed: when the biological influence was significant (Chl a greater than 0.8 μg/dm3), DOC was retrieved by the conservative and biological model, and if the conservative mixing was dominant (Chl a less than 0.8 μg/dm3), the direct DOC concentration and CDOM concentration relationship was used. Based on the pro- posed algorithm, a reasonable DOC distribution for the ECS from satellite was obtained in this study, and the proposed method can be applied to the other large river-dominant marginal sea.
基金Supported by the Natural Science Foundation of Shanghai(No.19ZR1415300)the Zhejiang Provincial Natural Science Foundation of China(No.LQ21D060005)the China Postdoctoral Science Foundation(No.2020M681931)。
文摘Salt marshes are research hotspots of the carbon cycle in coastal zones because large amounts of atmospheric carbon dioxide is fi xed by salt marshes vegetation and stored in its biomass and soil.Dissolved organic carbon(DOC)in submarine groundwater(well water and pore water)in salt marshes plays an important role in advective exchange between the salt marshes and coastal waters.However,the molecular characteristics of DOC in salt marsh groundwater are poorly understood because of the complex DOC structures and hydrodynamic process.In this study,fl uorescent components and refractory DOC(RDOC)in submarine groundwater from a salt marsh(Chongming Island,China)and adjacent coastal water were characterized by fl uorescence spectroscopy and nuclear magnetic resonance spectroscopy.The fl uorescent components identifi ed by parallel factor analysis indicated that humic-like substances dominated the chromophoric dissolved organic matter in the submarine groundwater.The chromophoric dissolved organic matter and dissolved organic matter in the submarine groundwater had non-conservative behaviors because of additions from terrestrial humic substances.The nuclear magnetic resonance spectra indicated that bioactive substances(carbohydrates)contributed only 13.2%-14.8%of the dissolved organic matter in the submarine groundwater but carboxyl-rich alicyclic molecules(CRAMs),the main components of RDOC,contributed 64.5%of the dissolved organic matter.Carbohydrates and CRAMs contributed 16.4%and 61.7%of the dissolved organic matter in the coastal water,similar to the contributions for submarine groundwater.The DOC concentration in submarine groundwater was 386±294μmol/L,which was signifi cantly higher than that in coastal water(91±19μmol/L).The high DOC concentrations and>60%relative RDOC content suggested that submarine groundwater may be an important source of RDOC to coastal seawater.This information will be helpful for estimating the climate eff ects of salt marsh blue carbon.
基金The National Natural Science Foundation of China under contract Nos41030858 and 40525017the Changjiang Scholars Program,Ministry of Education of China+1 种基金the National Basic Research Program of China(973Program)under contract No.2010CB428904the"Taishan Scholar"Special Research Fund of Shandong Province,China
文摘The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and municipal sewage along the eastern coast of the bay was clearly evident as CDOM level- s (defined as a30s), and dissolved organic carbon (DOC) concentrations were well correlated with salinity during all the cruises. Moreover, DOC concentrations were significantly correlated with chlorophyll a con- centrations in the surface microlayer as well as in the subsurface water. The concentrations of DOC and CDOM displayed a gradually decreasing trend from the northwestern and eastern coast to the central hay, and the values and gradients of their concentrations on the eastern coast were generally higher than those on the western coast. In addition, CDOM and DOC levels were generally higher in the surface microlayer than in the subsurface water. In comparison with DOC, CDOM exhibited a greater extent of enrichment in the microlayer in each cruise, with average enrichment factor (EF) values of 1.38 and 1.84, respectively. Four fluorescent components were identified from the surface microlayer and subsurface water samples and could be distinguished as peak A, peak T, peak B and peak M. For all the cruises, peak A levels were higher in the surface microlayer than in the subsurface water. This pattern of variation might be attributed to the terrestrial input.
基金The National Key Research and Development Progam of China under contract No.2017YFA0603003the National Basic Research Program(973 Program)of China under contract No.2015CB954002+3 种基金the Public Science and Technology Research Funds Project of Ocean under contract No.201505003the National Natural Science Foundation of China under contract Nos41676170,41676172,41476155,41621064 and 41406202the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration of China under contract No.SOEDZZ1801the Research Startup Project of Nanjing Instiute of Geography and Limnology,Chinese Academy of Sciences under contract No.Y7SL051001
文摘The distributions of estuarine colored dissolved organic matter(CDOM)are the combined results of physicalbiogeochemical processes.Remote sensing is needed to monitor highly dynamically estuarine CDOM.Using in situ data from four seasonal cruises,an algorithm is developed to estimate CDOM absorption coefficient at 400nm(aCDOM(400))in the Zhujiang(Pearl River)Estuary(ZJE).The algorithm uses band ratios of Rrs(667)/Rrs(443)and Rrs(748)/Rrs(412).By applying it to moderate resolution imaging spectroradiometer onboard Aqua satellite(MODIS/Aqua)data from 2002 to 2014,seasonal climatology aCDOM(400)in the ZJE is calculated.CDOM distributions are majorly influenced by water discharge from the Zhujiang River and underwater topography.Along the section vertical to a water depth gradient,the seasonal aCDOM(400)exponentially decreased(y=aebx,b〈0),but with great differences among seasons.Riverine fresh water is the primary source of CDOM in the ZJE.Fulvic acid fraction decreases with increasing salinity.Using developed algorithms,conservative CDOM mixing equation,and river discharge,effective riverine end-member concentration and flux of dissolved organic carbon(DOC)in summer and winter from 2002 to 2014 are first estimated from the MODIS/Aqua data.Both effective riverine end-member DOC concentration and flux are positively related to the river discharge,significantly in summer with R-2 of 0.698 for concentration and 0.965 7 for flux.
基金supported by the China’s Na-tional Basic Research Program (No. 2008CB418200)the National Knowledge Innovation Program of Chinese Academy of Sciences (No. kzcx2-yw-102)the Nation-al Natural Science Foundation of China (No. U0833603,40873079, 40703022).
文摘With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB) and hydrophilic neutrals (HIN). Those fractions were characterized by high performance size exclusion chromatography, fluorescence spectroscopy and UV absorbance. Among the 6 fractions, FA was predominant and accounted for 51% of the total DOM. The weight-average (Mw) and number-averaged (Mn) molecular weight of these fractions ranged from 1688 to 2355 Da and from 1338 to 1928 Da, respectively. A strong correlation was observed between specific UV absorbance at 280 nm, E2/E3 (absorbance at 250 nm to 365 nm), and the molecular weight for DOM fractions. UV-Vis fulvic-like fluorescence peaks were found in all fractions. Proteinlike fluorescence peaks existed in HON may indicate that microbial activity was severely in Lake Hongfeng. There was a significant relationship between fluorescence intensities and specific UV absorbance at 254 nm for those DOM fractions, suggesting their similar luminescence characteristics. The values of fluorescence index (f450/500) indicated that hydrophobic fractions may derive from terrestrial sources, and the hydrophilic fractions from microbial and terrestrial origins. Those results suggest that there were inter-relationships between molecular weight, fluorescence and absorbance characteristics, and also subtle consistencies between the hydrophilic and hydrophobic properties and the sources for these 6 fractions from Lake Hongfeng.
文摘The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age.
基金supported by the National Natural Science Foundation of China (No.40571073)
文摘This study investigated the potential role of soil colloids and dissolved organic matter (DOM) in transporting Cd through in situ undisturbed paddy soil monoliths. Brilliant Blue was used as a tracer to assess the effect of preferential flow on Cd down migration. Experimental results showed that deep penetration of Cd and Brilliant Blue into the soil profile took place due to the preferential flow through macropores, mainly earthworm channels, with much of chemicals thus bypassing the soil matrix. Dye tracer and Cd distribution within the soil matrix was fairly restricted to several centimeters. Colloid restrained the migration of both dye and Cd in the matrix and preferential flow area. DOM facilitated the transport of Cd and Brilliant Blue in matrix and macropores by about 10 cm over that of the control. Pearson's is correlation analysis revealed strong associations between Brilliant Blue concentrations, exchangeable Cd and total Cd concentrations in three studied plots indicating that they had taken the same preferential flow pathway.
基金the National Natural Sci-ence Foundation of China (No. 40673063, 40573065)
文摘Effects of dissolved organic matter (DOM) on adsorption and desorption of Hg were investigated in two kinds of soils, Xanthi-Udic Ferralosols (XUF) and Typic Purpli-Udic Cambosols (TPUC). The DOM was obtained from humus soil (DOMH), rice straw (DOMR), and pig manure (DOMP). The presence of DOM obviously reduced Hg maximum adsorption capacity with up to 40% decreases over the control, being an order of DOMH (250.00 mg/kg)< DOMR (303.03 mg/kg) < DOMP (322.58 mg/kg) < CK (control 416.67 mg/kg) for the...
基金supported by the earmarked fund for China Agriculture Research System (2013–2017)the Chinese Outstanding Talents Program in Agricultural Sciences
文摘Dissolved organic matter(DOM) plays important roles in soil biogeochemistry activity and nutrients transportation in soils, but studies regarding the long-term effects of green manures on the content and structure of DOM in red paddy soil have not been reported yet. A long-term green manure experiment established in 1982 was utilized to test the DOM contents in different treatments, and the spectral characteristics of DOM were investigated by using ultraviolet-visible(UV-Vis) spectrometry and Fourier transform infrared(FTIR) spectrometry. The experiment included four cropping systems: ricerice-milk vetch(RRV), rice-rice-rape(RRP), rice-rice-ryegrass(RRG) and rice-rice-winter fallow(RRF), among them, milk vetch, rape, and ryegrass are popular winter green manure species in southern China. The results showed that the content of dissolved organic carbon(DOC), which is widely used to estimate the concentration of DOM, was significantly promoted after the incorporation of green manures compared with the other sampling stages. The contents of aromatic groups and the degree of humification of DOM increased in RRV and RRP, suggesting more complex compositions of the soil DOM after long-term application of milk vetch and rape. The contents of phenol, alcohol and carboxylic acid group at the mature stage of early rice were significantly higher than those at the stage of after green manures turned over, especially for the RRV treatment. The absorption ratio of FTIR indicated that winter plantation of rape increased the aromatic-C/aliphatic-C ratio, and ryegrass increased the aromatic-C/carboxyl-C ratio. In conclusion, long-term planting of milk vetch and rape as green manures increased the degree of aromaticity, humification and average molecular weight of DOM, and made the DOM more stable in red paddy soil.
基金Project supported by the Knowledge Innovation Engineering Project of the Chinese Academy of Sciences(No. KSCX2-YW-N-46-06)the National Natural Science Foundation of China(No. 40501030).
文摘Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soilwater solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R^2 = 0.3122 and R^2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affectext the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.