The large reef complexes of the Upper Permian Changxing Formation, with a significant breakthrough for petroleum exploration, are an important target for petroleum exploration in the Yuanba area of the Sichuan Basin i...The large reef complexes of the Upper Permian Changxing Formation, with a significant breakthrough for petroleum exploration, are an important target for petroleum exploration in the Yuanba area of the Sichuan Basin in SW China. The storage space types of reef complexes are dominated by the dissolved pore-fracture(DPF). However, using only single geophysical methods, it is difficult to predict effective distribution of DPF. Based on a combination of geological models and geophysics technology, this study proposes two new geophysical methods, including anisotropy coherence technique(ACT) and fracture intensity inversion(FII), to research the characteristics of DPF by faciescontrolling in Changxing Formation in Yuanba area. Two major findings are presented as follows:(1) the characteristics of DPF varying with facies are the result of different diagenetic and petrophysical property. The intensity of DPF decreases from reef and bioclastic bank to interbank sea and slope;(2) ACT can qualitatively identify the distribution of DPF with no-directional and dispersed distribution, while FII can quantitatively characterize the intensity of DPF development within various sedimentary facies. When integrated into the geological study, ACT and FII can provide an effective way to predict the distribution of DPF in similar geological settings and the predicted DPF have been supported by the historical well data.展开更多
The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to...The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.展开更多
Very thick, fine-grained quartzose sandstone of the Lower Carboniferous (called the Donghe sandstone) was discovered in Donghe-1 well in the Tarim basin. Highly-productive commercial oil and gas flows were obtained wh...Very thick, fine-grained quartzose sandstone of the Lower Carboniferous (called the Donghe sandstone) was discovered in Donghe-1 well in the Tarim basin. Highly-productive commercial oil and gas flows were obtained when a well completion test was conducted. This important discovery proved that the quartzose sandstone is a prospecting target with good prospects. After that, other two paying oil and gas flows were found in the Lower Carboniferous in the Tazhong-4 and Tazhong-10 structures (Tazhong means central Tarim), equivalent to the Donghe sandstone. The Tazhong-4 structural oil field is the biggest oil field ever discovered. Therefore it is of guiding importance in oil and gas exploration to deepen the study of sedimentary and reservoir features and the sedimentary environment of the Donghe sandstone and to build a sedimentary model in order to understand the reservoir distribution pattern.展开更多
基金supported by the National Science and Technology Major Project of China (Nos. 2011ZX05025-002-02-05)the National Natural Science Foundation of China (Nos. 41202086, 41202087, 41102068)
文摘The large reef complexes of the Upper Permian Changxing Formation, with a significant breakthrough for petroleum exploration, are an important target for petroleum exploration in the Yuanba area of the Sichuan Basin in SW China. The storage space types of reef complexes are dominated by the dissolved pore-fracture(DPF). However, using only single geophysical methods, it is difficult to predict effective distribution of DPF. Based on a combination of geological models and geophysics technology, this study proposes two new geophysical methods, including anisotropy coherence technique(ACT) and fracture intensity inversion(FII), to research the characteristics of DPF by faciescontrolling in Changxing Formation in Yuanba area. Two major findings are presented as follows:(1) the characteristics of DPF varying with facies are the result of different diagenetic and petrophysical property. The intensity of DPF decreases from reef and bioclastic bank to interbank sea and slope;(2) ACT can qualitatively identify the distribution of DPF with no-directional and dispersed distribution, while FII can quantitatively characterize the intensity of DPF development within various sedimentary facies. When integrated into the geological study, ACT and FII can provide an effective way to predict the distribution of DPF in similar geological settings and the predicted DPF have been supported by the historical well data.
基金funded by the National Natural Science Foundation of China(No.U22B6002)the“14th Five-Year”Forward-looking Basic Science and Technology Project of China National Petroleum Company Limited(No.2022DJ2107).
文摘The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.
文摘Very thick, fine-grained quartzose sandstone of the Lower Carboniferous (called the Donghe sandstone) was discovered in Donghe-1 well in the Tarim basin. Highly-productive commercial oil and gas flows were obtained when a well completion test was conducted. This important discovery proved that the quartzose sandstone is a prospecting target with good prospects. After that, other two paying oil and gas flows were found in the Lower Carboniferous in the Tazhong-4 and Tazhong-10 structures (Tazhong means central Tarim), equivalent to the Donghe sandstone. The Tazhong-4 structural oil field is the biggest oil field ever discovered. Therefore it is of guiding importance in oil and gas exploration to deepen the study of sedimentary and reservoir features and the sedimentary environment of the Donghe sandstone and to build a sedimentary model in order to understand the reservoir distribution pattern.