Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea....Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate.展开更多
Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (...Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.714-1.79) #mol/L and (0.564-1.41) mmol/L, respectively. Both BSi and LSi were high ii~. tbe inshore ar- eas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the sur- face layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm exper- iments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phospho- rus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.展开更多
Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influen...Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the estuary of the Huanghe River(Yellow River). Our results indicate that the concentrations of DSi in the river decreased significantly since 1986. Approximately 34% of dissolved silica was trapped in the basin between 1986 and 2010 due to a reduction of soil erosion. Phytoliths comprised 67.2%–96.3% of BSi, with the smoothing bar type being the dominant form. Concentrations of BSi are significantly higher in the Huanghe River compared to other major rivers throughout the world due to its high sediment yield. We also found that the ratios of BSi/(BSi+DSi) and BSi/SPM were approximately 0.5 and 0.003 at Lijin near the river mouth, indicating that BSi carried in suspension by the Huanghe River was an important component of the rivers silica load. Significant amounts of BSi were also composed of phytoliths in Bohai Sea sediments near the Huanghe River estuary with the smoothing bar form again being the most abundant. The relatively high specific fluxes of BSi in the Huanghe River reflect its high turbidity and high erosion rates in the basin. The high sediment load originating on the Loess Plateau is likely responsible for the higher BSi flux, in agreement with a general trend of increasing BSi flux with increasing sediment flux in global river systems. This study demonstrates that BSi transported by rivers can be composed largely of phytoliths originating from the erosion of topsoils. The flux of phytoliths in river's suspended sediment load may therefore represent a significant contribution to the biogeochemical cycle of silica in coastal waters.展开更多
基金Supported by the National Key Research and Development Program of China(No.2018YFC0309800)the National Natural Science Foundation of China(Nos.42176021,91858203)+1 种基金the Open Project Program of State Key Laboratory of Tropical Oceanography(No.LTOZZ2001)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)。
文摘Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate.
基金The National Natural Sciences Foundation of China under contract Nos 40925017 and 40876054the Ministry of Science&Technology of P.R.China under contract Nos 2011CB409802 and 2001CB409703
文摘Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.714-1.79) #mol/L and (0.564-1.41) mmol/L, respectively. Both BSi and LSi were high ii~. tbe inshore ar- eas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the sur- face layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm exper- iments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phospho- rus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41106072,41376093,41206064)Natural Science Foundation of Shandong(Grant No.ZR2010DM006)
文摘Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the estuary of the Huanghe River(Yellow River). Our results indicate that the concentrations of DSi in the river decreased significantly since 1986. Approximately 34% of dissolved silica was trapped in the basin between 1986 and 2010 due to a reduction of soil erosion. Phytoliths comprised 67.2%–96.3% of BSi, with the smoothing bar type being the dominant form. Concentrations of BSi are significantly higher in the Huanghe River compared to other major rivers throughout the world due to its high sediment yield. We also found that the ratios of BSi/(BSi+DSi) and BSi/SPM were approximately 0.5 and 0.003 at Lijin near the river mouth, indicating that BSi carried in suspension by the Huanghe River was an important component of the rivers silica load. Significant amounts of BSi were also composed of phytoliths in Bohai Sea sediments near the Huanghe River estuary with the smoothing bar form again being the most abundant. The relatively high specific fluxes of BSi in the Huanghe River reflect its high turbidity and high erosion rates in the basin. The high sediment load originating on the Loess Plateau is likely responsible for the higher BSi flux, in agreement with a general trend of increasing BSi flux with increasing sediment flux in global river systems. This study demonstrates that BSi transported by rivers can be composed largely of phytoliths originating from the erosion of topsoils. The flux of phytoliths in river's suspended sediment load may therefore represent a significant contribution to the biogeochemical cycle of silica in coastal waters.