期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Variation in concentration of dissolved silicate in the Eastern Philippine deep sea
1
作者 Ruixue XIA Qiang XIE +3 位作者 Weiqiang WANG Hongzhou XU Xuekun SHANG Yeqiang SHU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1454-1463,共10页
Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.... Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate. 展开更多
关键词 interannual variability North Pacific deep water upper deep layer dissolved silicate zonal velocity variability
下载PDF
Seasonal variations of particulate silicon in the Changjiang (Yangtze River) Estuary and its adjacent area 被引量:3
2
作者 CAO Lu LIU Sumei REN Jingling 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第4期1-10,共10页
Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (... Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.714-1.79) #mol/L and (0.564-1.41) mmol/L, respectively. Both BSi and LSi were high ii~. tbe inshore ar- eas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the sur- face layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm exper- iments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phospho- rus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem. 展开更多
关键词 biogenic silica lithogenic silica dissolved silicate suspended particulate matter Changjiang(Yangtze River) Estuary East China Sea
下载PDF
Variability in the composition and export of silica in the Huanghe River Basin 被引量:8
3
作者 RAN XiangBin CHE Hong +3 位作者 ZANG JiaYe YU YongGui LIU Sen ZHENG LiLi 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第11期2078-2089,共12页
Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influen... Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the estuary of the Huanghe River(Yellow River). Our results indicate that the concentrations of DSi in the river decreased significantly since 1986. Approximately 34% of dissolved silica was trapped in the basin between 1986 and 2010 due to a reduction of soil erosion. Phytoliths comprised 67.2%–96.3% of BSi, with the smoothing bar type being the dominant form. Concentrations of BSi are significantly higher in the Huanghe River compared to other major rivers throughout the world due to its high sediment yield. We also found that the ratios of BSi/(BSi+DSi) and BSi/SPM were approximately 0.5 and 0.003 at Lijin near the river mouth, indicating that BSi carried in suspension by the Huanghe River was an important component of the rivers silica load. Significant amounts of BSi were also composed of phytoliths in Bohai Sea sediments near the Huanghe River estuary with the smoothing bar form again being the most abundant. The relatively high specific fluxes of BSi in the Huanghe River reflect its high turbidity and high erosion rates in the basin. The high sediment load originating on the Loess Plateau is likely responsible for the higher BSi flux, in agreement with a general trend of increasing BSi flux with increasing sediment flux in global river systems. This study demonstrates that BSi transported by rivers can be composed largely of phytoliths originating from the erosion of topsoils. The flux of phytoliths in river's suspended sediment load may therefore represent a significant contribution to the biogeochemical cycle of silica in coastal waters. 展开更多
关键词 PHYTOLITH biogenic silica dissolved silicate suspended particle material Huanghe River (Yellow River)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部