The island-based energy storage is of urgent need for the grid construction combined with renewable energy for offshore operation.The direct use of seawater as a substitute of deionized water shows its great promise f...The island-based energy storage is of urgent need for the grid construction combined with renewable energy for offshore operation.The direct use of seawater as a substitute of deionized water shows its great promise for aqueous zinc-ion batteries in such a specific situation.However,the metal corrosion,dendrite growth,and hydrogen evolution stand out in the harsh seawater environment.To address these challenges,we proposed a corrosion inhibitor that was effective in the field of metal anti-corrosion,2-phosphonobutane-1,2,4-tricarboxylic acid(PBTCA),to inhibit anode corrosion caused by Cl-and active H_(2)O molecules by forming a stable solid electrolyte interphase(SEI)film in the seawater-based electrolyte.Besides,PBTCA can chelate with other cations present in seawater,such as Ca^(2+)and Mg^(2+),thereby preventing the aggregation and precipitation of sparingly soluble species.Under a current density of5 mA cm^(-2),the seawater-based zinc-ion battery exhibited an exceptional cycle life exceeding 2000 h and maintained a Coulombic efficiency of over 99.6%after 2000 cycles.Additionally,the performance of the Zn||ZVO full battery was significantly enhanced with the addition of PBTCA.This study provides a simple,low-cost,and efficient approach for making the seawater-based zinc-ion batteries useable.展开更多
Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-...Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-6%Al-5%Sn(mass fraction) alloys in seawater were studied and compared with the commercial AZ31 and AP65 alloys. The results show that the Mg-6%Al-1%Sn alloy obtains the most negative discharge potential of average-1.611V with a electric current density of 100 mA/cm2. EIS studies reveal that the Mg-Al-Sn alloy/seawater interfacial electrochemical process is determined by an activation controlled reaction. The assembled prototype batteries with Mg-6%Al-1%Sn alloy as anodes and Ag Cl as cathodes exhibit a satisfactory integrated discharge properties.展开更多
A metal-dissolved oxygen seawater battery(SWB)uses metal and dissolved oxygen as the reactants,and it is ideal for use as a long-time low-power distributed power supply in deep sea,due to its advantages of open struct...A metal-dissolved oxygen seawater battery(SWB)uses metal and dissolved oxygen as the reactants,and it is ideal for use as a long-time low-power distributed power supply in deep sea,due to its advantages of open structure in service without electrolyte.However,several simulating deep-sea environmental factors,such as flow rate,dissolved oxygen concentration,and temperature of seawater may af fect the oxygen reduction reaction(ORR)rate and the stability of electrochemically modified polyacrylonitrile-based carbon fiber brush(MPAN-CFB)cathode,which was studied by steady-state polarization and galvanostatic discharge methods.In addition,the scales formed on MPAN-CFB surface were characterized by SEM and XRD.Results show that the ORR rate increased quickly with the increase of the seawater flow rate up to 3 cm/s,and then gradually stabilized.Moreover,the ORR rate was largely af fected by dissolved oxygen concentration,and the concentration of>3 mg/L was favorable.Compared with surface layer temperature of 15℃,the low temperature of deep sea(4℃)has a negligible ef fect on ORR rate.When the working current is too high,it will lead to the formation of CaCO_3 scales(aragonite)of at the cathodic surface,resulting in the decrease of ORR rate,and consequently the damage to the long-time stability of MPAN-CFB.展开更多
The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/...The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/Co Ni P_(x)OER electrocatalyst is exploited.Benefiting from the electron redistribution and reaction kinetics modulation resulting from vacancy introduction and heterojunction formation,it yields ultralow OER overpotentials of 196,276,303 m V in 1 M KOH and 197,318,348 m V in 1 M KOH+seawater at 10,500,1000 m A cm^(-2),respectively,surviving 600 h at 800 m A cm^(-2)without obvious decay.Further,FeMoS_(x)/CoNiP_(x)-based Zn-air battery not only affords the high peak power density of 214.5 m W cm^(-2)but also exhibits the small voltage gap of 0.698 V and long lifetime of 500 h at 10 m A cm^(-2),overmatching overwhelming majority of reported advanced catalysts.It is revealed experimentally that the OER process on rationally designed Fe Mo S_(x)/Co Ni P_(x)follows the adsorbate evolution mechanism and the ratedetermining step shifts from^(*)OOH formation in individual building blocks to^(*)OOH deprotonation process in FeMoS_(x)/CoNiP_(x),providing the directly proof of how the vacancy introduction and heterojunction formation affect the reaction kinetics.展开更多
Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami...Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.展开更多
Seawater battery is an advanced energy storage system that enables conversion of chemical energy to electricity by consuming metals,dissolved oxygen and seawater in anode,cathode and electrolyte,respectively.However,t...Seawater battery is an advanced energy storage system that enables conversion of chemical energy to electricity by consuming metals,dissolved oxygen and seawater in anode,cathode and electrolyte,respectively.However,the oxygen reduction reaction(ORR)activity and stability of electrocatalysts can be easily deactivated due to the severe Cl~-permeation and corrosion in seawater electrolyte.Herein,we developed a structural buffer engineering strategy by spontaneously anchoring Cl~-intoα-Co(OH)_(2) as efficient and stable ORR electrocatalysts,in which the ultrathinα-Co(OH)_(2) nanosheets were synthesized using an ultrafast solution high-temperature shock(SHTS)strategy.The large lattice space(~0.8 nm)of layeredα-Co(OH)_(2) ensured the spontaneously penetration of Cl~-into the lattice structure and replaced part of OH~-to formα-Co(OH)_(2-x)Cl_x.The continuous leaching and compensating of saturated Cl inα-Co(OH)_(2-x)Cl_x could enhance the Cl~-corrosion resistance and modulate electronic structure of Co metallic sites,thus improving the ORR electrocatalytic activity and stability in seawater electrolyte.Theα-Co(OH)_(2-x)Cl_x seawater batteries display superior onset and half-wave potentials of 0.71 and 0.66 V,respectively,which are much better than the counterparts ofα-Co(OH)_(2) and ofβ-Co(OH)_(2) with no Cl~-penetrating and no buffer structure.Theα-Co(OH)_(2-x)Cl_x-based seawater batteries display stable open-circuit potential of 1.69 V and outstanding specific capacity of 1345 mAh·g^(-1).展开更多
The effect of indium alloying on the corrosion and discharge behaviors of Mg-Al-Zn-Ga alloys is investigated via materials characterization,immersion test and electrochemical methods.The results indicate that indium a...The effect of indium alloying on the corrosion and discharge behaviors of Mg-Al-Zn-Ga alloys is investigated via materials characterization,immersion test and electrochemical methods.The results indicate that indium alloying can effectively modify the distribution of intermetallic phases in Mg matrix via promoting the segregation of Al in the form of Mg17Al12 in matrix.The addition of indium can effectively activate Mg-Al-Zn-Ga alloy evidenced by increased hydrogen evolution volume and weight loss,negative shift of corrosion and discharge potentials,increase of corrosion current density,decrease of polarization resistance and promoted Faradic efficiency.Nonetheless,excessive indium alloying(2.0 wt.%)would strikingly deteriorate the electrochemical performance of Mg-Al-Zn-Ga anode due to the exorbitant active effect.The Mg-6 wt.%Al-3 wt.%Zn-1 wt.%Ga-1 wt.%In in as-cast state with acceptable corrosion rate and desirable discharge performance is a low cost,non-toxic and well-performance magnesium alloy,which is a promising anode materials for seawater-activated batteries.展开更多
得益于较高的理论能量密度、环境友好性和丰富的海水储量,海水基锌-空气电池(S-ZABs)被认为是一种极具应用前景的储能和能源转换装置,是解决能源短缺和环境污染问题的能源装置之一。然而对于S-ZABs而言,构筑在海水中具有高耐氯离子腐蚀...得益于较高的理论能量密度、环境友好性和丰富的海水储量,海水基锌-空气电池(S-ZABs)被认为是一种极具应用前景的储能和能源转换装置,是解决能源短缺和环境污染问题的能源装置之一。然而对于S-ZABs而言,构筑在海水中具有高耐氯离子腐蚀性与高性能的阴极氧还原反应电催化剂仍然具有挑战性。因此,我们通过高温硒化策略,在氮掺杂介孔碳材料上设计了超薄碳铠甲层封装的Co_(9)Se_(8)纳米颗粒高效ORR电催化剂(命名为NMC-Co_(9)Se_(8))。外部的超薄碳铠甲层不仅可以改善催化过程中的电子转移过程,抑制纳米颗粒的团聚,而且可以作为盔甲保护内部活性位点免受Cl^(-)吸附和腐蚀。得益于这种独特的结构,NMC-Co_(9)Se_(8)在0.1 mol·L^(-1)KOH海水电解质中表现出优异的ORR性能,其起始电位为0.904V,半波电位为0.860 V。更重要的是,基于NMC-Co_(9)Se_(8)催化剂的S-ZABs可提供172.4 m W·cm^(-2)的功率密度和超过150h的优异长期放电稳定性,均高于基于Pt/C的S-ZABs性能。这项工作为开发用于海水基锌-空气电池和其他能源转换技术具有耐氯离子腐蚀且高效的ORR催化剂提供了新思路。展开更多
Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electroch...Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electrochemical corrosion properties in a 3.5% NaCl solution was investigated using scanning electron microscope and electrochemical measurements. The results indicate that Ce refines the grain structure of Mg-Al-Pb alloy. The formation of strip Al11Ce3 second phase promotes the uniform distribution of Mg17Al12 phase in Mg-Al-Pb-Ce alloy. The addition of cerium accelerates the discharge activity of Mg-Al-Pb alloy. Due to a large number of cathodic Al11Ce3 and MglyAla2 phases, Ce promotes the micro-galvanic corrosion and leads to larger corrosion current density and hydrogen evolution rate in Mg-Al-Pb-Ce alloy than those in Mg-Al-Pb alloy. However, Mg-Al-Pb alloy expresses smaller utilization efficiency than Mg-Al-Pb-Ce alloy because of grain detachment.展开更多
Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn...Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.展开更多
基金the National Key Research and Development Program of China (Nos.2022YFB2404500 and 2021YFF0500600)the National Natural Science Foundation of China (Nos.52172223,52272230,52302300)the China Postdoctoral Science Foundation (No.2022M722361)。
文摘The island-based energy storage is of urgent need for the grid construction combined with renewable energy for offshore operation.The direct use of seawater as a substitute of deionized water shows its great promise for aqueous zinc-ion batteries in such a specific situation.However,the metal corrosion,dendrite growth,and hydrogen evolution stand out in the harsh seawater environment.To address these challenges,we proposed a corrosion inhibitor that was effective in the field of metal anti-corrosion,2-phosphonobutane-1,2,4-tricarboxylic acid(PBTCA),to inhibit anode corrosion caused by Cl-and active H_(2)O molecules by forming a stable solid electrolyte interphase(SEI)film in the seawater-based electrolyte.Besides,PBTCA can chelate with other cations present in seawater,such as Ca^(2+)and Mg^(2+),thereby preventing the aggregation and precipitation of sparingly soluble species.Under a current density of5 mA cm^(-2),the seawater-based zinc-ion battery exhibited an exceptional cycle life exceeding 2000 h and maintained a Coulombic efficiency of over 99.6%after 2000 cycles.Additionally,the performance of the Zn||ZVO full battery was significantly enhanced with the addition of PBTCA.This study provides a simple,low-cost,and efficient approach for making the seawater-based zinc-ion batteries useable.
基金Project supported by the Fundamental Research Funds for the Central Universities of China
文摘Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-6%Al-5%Sn(mass fraction) alloys in seawater were studied and compared with the commercial AZ31 and AP65 alloys. The results show that the Mg-6%Al-1%Sn alloy obtains the most negative discharge potential of average-1.611V with a electric current density of 100 mA/cm2. EIS studies reveal that the Mg-Al-Sn alloy/seawater interfacial electrochemical process is determined by an activation controlled reaction. The assembled prototype batteries with Mg-6%Al-1%Sn alloy as anodes and Ag Cl as cathodes exhibit a satisfactory integrated discharge properties.
基金Supported by the National Major Scientific Instruments Development Project of the National Natural Science Foundation of China(No.41427803)the Zhuang Fa Yu Yan Program(No.41421020401)
文摘A metal-dissolved oxygen seawater battery(SWB)uses metal and dissolved oxygen as the reactants,and it is ideal for use as a long-time low-power distributed power supply in deep sea,due to its advantages of open structure in service without electrolyte.However,several simulating deep-sea environmental factors,such as flow rate,dissolved oxygen concentration,and temperature of seawater may af fect the oxygen reduction reaction(ORR)rate and the stability of electrochemically modified polyacrylonitrile-based carbon fiber brush(MPAN-CFB)cathode,which was studied by steady-state polarization and galvanostatic discharge methods.In addition,the scales formed on MPAN-CFB surface were characterized by SEM and XRD.Results show that the ORR rate increased quickly with the increase of the seawater flow rate up to 3 cm/s,and then gradually stabilized.Moreover,the ORR rate was largely af fected by dissolved oxygen concentration,and the concentration of>3 mg/L was favorable.Compared with surface layer temperature of 15℃,the low temperature of deep sea(4℃)has a negligible ef fect on ORR rate.When the working current is too high,it will lead to the formation of CaCO_3 scales(aragonite)of at the cathodic surface,resulting in the decrease of ORR rate,and consequently the damage to the long-time stability of MPAN-CFB.
基金supported by the National Natural Science Foundation of China (21975136,22102076)the Fundamental Research Funds for the Central Universities (63185015)+2 种基金the Shenzhen Science,Technology and Innovation Committee (JCYJ20190808151603654,JCYJ20210324121002007)the Open Funds from National Engineering Lab for Mobile Source Emission Control Technology (NELMS2020A12)the Open Fund for Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response (RZH2021-KF-03)。
文摘The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/Co Ni P_(x)OER electrocatalyst is exploited.Benefiting from the electron redistribution and reaction kinetics modulation resulting from vacancy introduction and heterojunction formation,it yields ultralow OER overpotentials of 196,276,303 m V in 1 M KOH and 197,318,348 m V in 1 M KOH+seawater at 10,500,1000 m A cm^(-2),respectively,surviving 600 h at 800 m A cm^(-2)without obvious decay.Further,FeMoS_(x)/CoNiP_(x)-based Zn-air battery not only affords the high peak power density of 214.5 m W cm^(-2)but also exhibits the small voltage gap of 0.698 V and long lifetime of 500 h at 10 m A cm^(-2),overmatching overwhelming majority of reported advanced catalysts.It is revealed experimentally that the OER process on rationally designed Fe Mo S_(x)/Co Ni P_(x)follows the adsorbate evolution mechanism and the ratedetermining step shifts from^(*)OOH formation in individual building blocks to^(*)OOH deprotonation process in FeMoS_(x)/CoNiP_(x),providing the directly proof of how the vacancy introduction and heterojunction formation affect the reaction kinetics.
基金Project (2011BAE22B03) supported by National Key Technologies R&D Program of ChinaProject (2011DFA50906) supported by the International S&T Cooperation Program of China
文摘Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.
基金financially supported by the Key Research and Development Project of Hainan Province(No.ZDYF2022GXJS006)the National Natural Science Foundation of China(Nos.52177220 and 52231008)。
文摘Seawater battery is an advanced energy storage system that enables conversion of chemical energy to electricity by consuming metals,dissolved oxygen and seawater in anode,cathode and electrolyte,respectively.However,the oxygen reduction reaction(ORR)activity and stability of electrocatalysts can be easily deactivated due to the severe Cl~-permeation and corrosion in seawater electrolyte.Herein,we developed a structural buffer engineering strategy by spontaneously anchoring Cl~-intoα-Co(OH)_(2) as efficient and stable ORR electrocatalysts,in which the ultrathinα-Co(OH)_(2) nanosheets were synthesized using an ultrafast solution high-temperature shock(SHTS)strategy.The large lattice space(~0.8 nm)of layeredα-Co(OH)_(2) ensured the spontaneously penetration of Cl~-into the lattice structure and replaced part of OH~-to formα-Co(OH)_(2-x)Cl_x.The continuous leaching and compensating of saturated Cl inα-Co(OH)_(2-x)Cl_x could enhance the Cl~-corrosion resistance and modulate electronic structure of Co metallic sites,thus improving the ORR electrocatalytic activity and stability in seawater electrolyte.Theα-Co(OH)_(2-x)Cl_x seawater batteries display superior onset and half-wave potentials of 0.71 and 0.66 V,respectively,which are much better than the counterparts ofα-Co(OH)_(2) and ofβ-Co(OH)_(2) with no Cl~-penetrating and no buffer structure.Theα-Co(OH)_(2-x)Cl_x-based seawater batteries display stable open-circuit potential of 1.69 V and outstanding specific capacity of 1345 mAh·g^(-1).
基金the financial support of the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018BD025)the National Natural Science Foundation of China(Grant No.41576114)+2 种基金Qingdao Innovative Leading Talent Foundation(Grant No.15-10-3-15-(39)-zch)Qingdao Science and Technology Achievement Transformation Guidance Plan(Applied Basic Research,Grant No.14-2-4-4-jch)financially supported by State Key Laboratory for Marine Corrosion and Protection,Luoyang Ship Material Research Institute,China(Project No.614290101011703).
文摘The effect of indium alloying on the corrosion and discharge behaviors of Mg-Al-Zn-Ga alloys is investigated via materials characterization,immersion test and electrochemical methods.The results indicate that indium alloying can effectively modify the distribution of intermetallic phases in Mg matrix via promoting the segregation of Al in the form of Mg17Al12 in matrix.The addition of indium can effectively activate Mg-Al-Zn-Ga alloy evidenced by increased hydrogen evolution volume and weight loss,negative shift of corrosion and discharge potentials,increase of corrosion current density,decrease of polarization resistance and promoted Faradic efficiency.Nonetheless,excessive indium alloying(2.0 wt.%)would strikingly deteriorate the electrochemical performance of Mg-Al-Zn-Ga anode due to the exorbitant active effect.The Mg-6 wt.%Al-3 wt.%Zn-1 wt.%Ga-1 wt.%In in as-cast state with acceptable corrosion rate and desirable discharge performance is a low cost,non-toxic and well-performance magnesium alloy,which is a promising anode materials for seawater-activated batteries.
文摘得益于较高的理论能量密度、环境友好性和丰富的海水储量,海水基锌-空气电池(S-ZABs)被认为是一种极具应用前景的储能和能源转换装置,是解决能源短缺和环境污染问题的能源装置之一。然而对于S-ZABs而言,构筑在海水中具有高耐氯离子腐蚀性与高性能的阴极氧还原反应电催化剂仍然具有挑战性。因此,我们通过高温硒化策略,在氮掺杂介孔碳材料上设计了超薄碳铠甲层封装的Co_(9)Se_(8)纳米颗粒高效ORR电催化剂(命名为NMC-Co_(9)Se_(8))。外部的超薄碳铠甲层不仅可以改善催化过程中的电子转移过程,抑制纳米颗粒的团聚,而且可以作为盔甲保护内部活性位点免受Cl^(-)吸附和腐蚀。得益于这种独特的结构,NMC-Co_(9)Se_(8)在0.1 mol·L^(-1)KOH海水电解质中表现出优异的ORR性能,其起始电位为0.904V,半波电位为0.860 V。更重要的是,基于NMC-Co_(9)Se_(8)催化剂的S-ZABs可提供172.4 m W·cm^(-2)的功率密度和超过150h的优异长期放电稳定性,均高于基于Pt/C的S-ZABs性能。这项工作为开发用于海水基锌-空气电池和其他能源转换技术具有耐氯离子腐蚀且高效的ORR催化剂提供了新思路。
基金Project(2015JC3004)supported by Science and Technology Plan Projects of Hunan Province,ChinaProject(51401243)supported by the National Natural Science Foundation of China
文摘Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electrochemical corrosion properties in a 3.5% NaCl solution was investigated using scanning electron microscope and electrochemical measurements. The results indicate that Ce refines the grain structure of Mg-Al-Pb alloy. The formation of strip Al11Ce3 second phase promotes the uniform distribution of Mg17Al12 phase in Mg-Al-Pb-Ce alloy. The addition of cerium accelerates the discharge activity of Mg-Al-Pb alloy. Due to a large number of cathodic Al11Ce3 and MglyAla2 phases, Ce promotes the micro-galvanic corrosion and leads to larger corrosion current density and hydrogen evolution rate in Mg-Al-Pb-Ce alloy than those in Mg-Al-Pb alloy. However, Mg-Al-Pb alloy expresses smaller utilization efficiency than Mg-Al-Pb-Ce alloy because of grain detachment.
基金Project(JPPT-115-168)supported by the National Key Science and Technological Project of ChinaProject(51101171)supported by the National Natural Science Foundation of China
文摘Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.