The large yellow croaker(Larimichthys crocea),which is an economically important mariculture fish in China,is often exposed to environmental hypoxia.Reactive oxygen species(ROS)homeostasis is essential for the mainten...The large yellow croaker(Larimichthys crocea),which is an economically important mariculture fish in China,is often exposed to environmental hypoxia.Reactive oxygen species(ROS)homeostasis is essential for the maintenance of normal physiological conditions in an organism.Direct evidence that environmental hypoxia leads to ROS overproduction is scarce in marine fish.Furthermore,the sources of ROS overproduction in marine fish under hypoxic stress are poorly known.In this study,we investigated the effects of hypoxia on redox homeostasis in L.crocea and the impact of impaired redox homeostasis on fish.We first confirmed that hypoxia drove ROS production mainly via the mitochondrial electron transport chain and NADPH oxidase complex pathways in L.crocea and its cell line(large yellow croaker fry(LYCF)cells).We subsequently detected a marked increase in the antioxidant systems of the fish.However,imbalance between the pro-oxidation and antioxidation systems ultimately led to excessive ROS and oxidative stress.Cell viability showed a remarkable decrease while oxidative indicators,such as malondialdehyde,proteincarbonylation,and8-hydroxy-2 deoxyguanosine,showed a significant increase after hypoxia,accompanied by tissue damage.Nacetylcysteine(NAC)reduced ROS levels,alleviated oxidative damage,and improved cell viability in vitro.Appropriate uptake of ROS scavengers(e.g.,NAC and elamipretide Szeto-Schiller-31)and inhibitors(e.g.,apocynin,diphenylene iodonium,and 5-hydroxydecanoate)may be effective at overcoming hypoxic toxicity.Our findings highlight previously unstudied strategies of hypoxic toxicity resistance in marine fish.展开更多
The prediction of water quality in terms of variables like dissolved oxygen (DO), biochemical oxygen demand (BOD), pH value, total dissolved solids (TDS) and salinity etc. is useful for evaluating the use of water for...The prediction of water quality in terms of variables like dissolved oxygen (DO), biochemical oxygen demand (BOD), pH value, total dissolved solids (TDS) and salinity etc. is useful for evaluating the use of water for various related purposes. The widely used Streeter and Phelps models for computing biochemical oxygen demand and its impact on dissolved oxygen do not account for the settleable component of BOD and related implications. The model also does not account for the impact of storage zone on the stream’s DO. In the present work an attempt is made to develop a model which simultaneously accounts for the settleable component of BOD and the effect of storage zones onriver’s DO. An application of the model to real field data suggests that the cumulative impact of settleable BOD and presence of storage zone in the river is to shift the critical deficit closer to the point source and magnify its amount.展开更多
基金supported by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(U1809212)Scientific and Technical Project of Zhejiang Province(2016C02055-7)+3 种基金Scientific and Technical Project of Ningbo City(2021Z002,2015C110005)Ningbo Science and Technology Plan Projects(2018A610228)Teaching and Research Project of Ningbo University(XYL19023)Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture,K.C.Wong Magna Fund in Ningbo University。
文摘The large yellow croaker(Larimichthys crocea),which is an economically important mariculture fish in China,is often exposed to environmental hypoxia.Reactive oxygen species(ROS)homeostasis is essential for the maintenance of normal physiological conditions in an organism.Direct evidence that environmental hypoxia leads to ROS overproduction is scarce in marine fish.Furthermore,the sources of ROS overproduction in marine fish under hypoxic stress are poorly known.In this study,we investigated the effects of hypoxia on redox homeostasis in L.crocea and the impact of impaired redox homeostasis on fish.We first confirmed that hypoxia drove ROS production mainly via the mitochondrial electron transport chain and NADPH oxidase complex pathways in L.crocea and its cell line(large yellow croaker fry(LYCF)cells).We subsequently detected a marked increase in the antioxidant systems of the fish.However,imbalance between the pro-oxidation and antioxidation systems ultimately led to excessive ROS and oxidative stress.Cell viability showed a remarkable decrease while oxidative indicators,such as malondialdehyde,proteincarbonylation,and8-hydroxy-2 deoxyguanosine,showed a significant increase after hypoxia,accompanied by tissue damage.Nacetylcysteine(NAC)reduced ROS levels,alleviated oxidative damage,and improved cell viability in vitro.Appropriate uptake of ROS scavengers(e.g.,NAC and elamipretide Szeto-Schiller-31)and inhibitors(e.g.,apocynin,diphenylene iodonium,and 5-hydroxydecanoate)may be effective at overcoming hypoxic toxicity.Our findings highlight previously unstudied strategies of hypoxic toxicity resistance in marine fish.
文摘The prediction of water quality in terms of variables like dissolved oxygen (DO), biochemical oxygen demand (BOD), pH value, total dissolved solids (TDS) and salinity etc. is useful for evaluating the use of water for various related purposes. The widely used Streeter and Phelps models for computing biochemical oxygen demand and its impact on dissolved oxygen do not account for the settleable component of BOD and related implications. The model also does not account for the impact of storage zone on the stream’s DO. In the present work an attempt is made to develop a model which simultaneously accounts for the settleable component of BOD and the effect of storage zones onriver’s DO. An application of the model to real field data suggests that the cumulative impact of settleable BOD and presence of storage zone in the river is to shift the critical deficit closer to the point source and magnify its amount.