The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in ...The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences.A specific sub-model form of our suggested family,named as a new extended heavy-tailed Weibull distribution is examined in detail.Some basic characterizations,including quantile function and raw moments have been derived.The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method.To judge the performance of the maximum likelihood estimators,a simulation analysis is performed in detail.Furthermore,some important actuarial measures such as value at risk and tail value at risk are also computed.A simulation study based on these actuarial measures is conducted to exhibit empirically that the proposed model is heavy-tailed.The usefulness of the proposed family is illustrated by means of an application to a heavy-tailed insurance loss data set.The practical application shows that the proposed model is more flexible and efficient than the other six competing models including(i)the two-parameter models Weibull,Lomax and Burr-XII distributions(ii)the three-parameter distributions Marshall-Olkin Weibull and exponentiated Weibull distributions,and(iii)a well-known four-parameter Kumaraswamy Weibull distribution.展开更多
A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Ran...A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Randomly sampling these functions with a radially uniform sampling scheme produces heavy-tailed distributions. For two-dimensional Gaussians and one-dimensional exponential functions, exact power-laws with exponent –1 are obtained. In other cases, densities with an approximate power-law behaviour close to the origin arise. These densities are analyzed using Padé approximants in order to show the approximate power-law behaviour. If the sampled function itself follows a power-law with exponent –α, random sampling leads to densities that also follow an exact power-law, with exponent -n/a – 1. The presented mechanism shows that power-laws can arise in generic situations different from previously considered specialized systems such as multi-particle systems close to phase transitions, dynamical systems at bifurcation points or systems displaying self-organized criticality. Thus, the presented mechanism may serve as an alternative hypothesis in system identification problems.展开更多
This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and F...This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.展开更多
In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating acco...In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.展开更多
Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subcla...Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subclass DKc and subclass DK 1 are obtained.展开更多
This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random...This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.展开更多
Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution proba...Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter.展开更多
Abstract Let F(x) be a distribution function supported on [0,X), with an equilibrium distribution function Fe(x). In this paper we shall study the function $r_e(x)( - {\rm ln}{\overline F}_e ( x ))\prime = {\overline ...Abstract Let F(x) be a distribution function supported on [0,X), with an equilibrium distribution function Fe(x). In this paper we shall study the function $r_e(x)( - {\rm ln}{\overline F}_e ( x ))\prime = {\overline F}( x )/\int_x^\infty {\overline F}( u )du $, which is called the equilibrium hazard rate of F. By the limiting behavior of re(x) we give a criterion to identify F to be heavy-tailed or light-tailed. Two broad classes of heavy-tailed distributions are also introduced and studied.展开更多
For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove th...For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove that the lower limit of the ratio ■equals 1 as x →∞. When the summands are real-valued, we also obtain some asymptotic results for the tail probability of the sums. Besides, a local version as well as a density version of the above results is also presented.展开更多
The error patterns of a wireless channel can be represented by a binary sequence of ones(burst) and zeros(run),which is referred to as a trace.Recent surveys have shown that the run length distribution of a wireless c...The error patterns of a wireless channel can be represented by a binary sequence of ones(burst) and zeros(run),which is referred to as a trace.Recent surveys have shown that the run length distribution of a wireless channel is an intrinsically heavy-tailed distribution.Analytical models to characterize such features have to deal with the trade-off between complexity and accuracy.In this paper,we use an independent but not identically distributed(inid) stochastic process to characterize such channel behavior and show how to parameterize the inid bit error model on the basis of a trace.The proposed model has merely two parameters both having intuitive meanings and can be easily figured out from a trace.Compared with chaotic maps,the inid bit error model is simple for practical use but can still be deprived from heavy-tailed distribution in theory.Simulation results demonstrate that the inid model can match the trace,but with fewer parameters.We then propose an improvement on the inid model to capture the 'bursty' nature of channel errors,described by burst length distribution.Our theoretical analysis is supported by an experimental evaluation.展开更多
The famous Embrechts-Goldie-Veraverbeke formula shows that, in the classical Cramér-Lundberg risk model, the ruin probabilities satisfy $R(x, \infty ) \sim \rho ^{ - 1} \bar F_e (x)$ if the claim sizes are heavy-...The famous Embrechts-Goldie-Veraverbeke formula shows that, in the classical Cramér-Lundberg risk model, the ruin probabilities satisfy $R(x, \infty ) \sim \rho ^{ - 1} \bar F_e (x)$ if the claim sizes are heavy-tailed, where Fe denotes the equilibrium distribution of the common d.f. F of the i.i.d. claims, ? is the safety loading coefficient of the model and the limit process is for x → ∞. In this paper we obtain a related local asymptotic relationship for the ruin probabilities. In doing this we establish two lemmas regarding the n-fold convolution of subexponential equilibrium distributions, which are of significance on their own right.展开更多
In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. A...In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.展开更多
Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk :...Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk : k ≥ 1}. In this paper, the authors obtain the necessary and sufficient conditions for the random sums Sτ=∑n=1^τ Xn to have a consistently varying tail when the random number τ has a heavier tail than the summands, i.e.,P(X〉x)/P(τ〉x)→0 as x →∞.展开更多
Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {X...Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the展开更多
We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail...We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.展开更多
This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random ...This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.展开更多
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
This paper extends the ordinary renewal risk model to the case where the premium income process,based on a renewal counting process,is no longer a linear function;and the total claim amount process is described by a c...This paper extends the ordinary renewal risk model to the case where the premium income process,based on a renewal counting process,is no longer a linear function;and the total claim amount process is described by a compound renewal process.For this realistic risk model,the large deviations for the claim surplus process is investigated.展开更多
文摘The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences.A specific sub-model form of our suggested family,named as a new extended heavy-tailed Weibull distribution is examined in detail.Some basic characterizations,including quantile function and raw moments have been derived.The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method.To judge the performance of the maximum likelihood estimators,a simulation analysis is performed in detail.Furthermore,some important actuarial measures such as value at risk and tail value at risk are also computed.A simulation study based on these actuarial measures is conducted to exhibit empirically that the proposed model is heavy-tailed.The usefulness of the proposed family is illustrated by means of an application to a heavy-tailed insurance loss data set.The practical application shows that the proposed model is more flexible and efficient than the other six competing models including(i)the two-parameter models Weibull,Lomax and Burr-XII distributions(ii)the three-parameter distributions Marshall-Olkin Weibull and exponentiated Weibull distributions,and(iii)a well-known four-parameter Kumaraswamy Weibull distribution.
文摘A simple stochastic mechanism that produces exact and approximate power-law distributions is presented. The model considers radially symmetric Gaussian, exponential and power-law functions inn= 1, 2, 3 dimensions. Randomly sampling these functions with a radially uniform sampling scheme produces heavy-tailed distributions. For two-dimensional Gaussians and one-dimensional exponential functions, exact power-laws with exponent –1 are obtained. In other cases, densities with an approximate power-law behaviour close to the origin arise. These densities are analyzed using Padé approximants in order to show the approximate power-law behaviour. If the sampled function itself follows a power-law with exponent –α, random sampling leads to densities that also follow an exact power-law, with exponent -n/a – 1. The presented mechanism shows that power-laws can arise in generic situations different from previously considered specialized systems such as multi-particle systems close to phase transitions, dynamical systems at bifurcation points or systems displaying self-organized criticality. Thus, the presented mechanism may serve as an alternative hypothesis in system identification problems.
基金Supported by the Natural Science Foundation of the Education Department of Anhui Province(0505101)
文摘This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.
基金supported by the National Natural Science Foundation of China(11101451)Ph.D.Programs Foundation of Ministry of Education of China(20110191110033)
文摘In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.
基金Supported by the National Natural Science Foundation of China( 1 0 2 71 0 87)
文摘Some equivalent conditions on the classes of lighted-tailed and heavily heavy-tailed and lightly heavy-tailed d.f.s are introduced.The limit behavior of xα(x) and e λx(x) are discussed.Some properties of the subclass DKc and subclass DK 1 are obtained.
文摘This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.
基金Supported by the National Natural Science Foundation of China(No.61976080)the Science and Technology Key Project of Science and Technology Department of Henan Province(No.212102310298)the Innovation and Quality Improvement Project for Graduate Education of Henan University(No.SYL20010101)。
文摘Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter.
基金Supported by the National Natural Science Foundation of China (No.10071081) & Special Foundation of USTC.
文摘Abstract Let F(x) be a distribution function supported on [0,X), with an equilibrium distribution function Fe(x). In this paper we shall study the function $r_e(x)( - {\rm ln}{\overline F}_e ( x ))\prime = {\overline F}( x )/\int_x^\infty {\overline F}( u )du $, which is called the equilibrium hazard rate of F. By the limiting behavior of re(x) we give a criterion to identify F to be heavy-tailed or light-tailed. Two broad classes of heavy-tailed distributions are also introduced and studied.
基金Supported by the National Natural Science Foundation of China(no.11401415)Tian Yuan Foundation(nos.11226208 and 11426139)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(no.13KJB110025)Postdoctoral Research Program of Jiangsu Province of China(no.1402111C)Jiangsu Overseas Research and Training Program for Prominent University Young and Middle-aged Teachers and Presidents
文摘For any given positive integer m, let X_i, 1 ≤ i ≤ m be m independent random variables with distributions F_i, 1 ≤ i ≤ m. When all the summands are nonnegative and at least one of them is heavy-tailed, we prove that the lower limit of the ratio ■equals 1 as x →∞. When the summands are real-valued, we also obtain some asymptotic results for the tail probability of the sums. Besides, a local version as well as a density version of the above results is also presented.
基金Project supported by the National Natural Science Foundationof China (Nos. 61103010,61103190,and 60803100)the National Basic Research Program (973) of China (No. 2012CB933500)the High-Tech R&D Program (863) of China (No.2012AA011001)
文摘The error patterns of a wireless channel can be represented by a binary sequence of ones(burst) and zeros(run),which is referred to as a trace.Recent surveys have shown that the run length distribution of a wireless channel is an intrinsically heavy-tailed distribution.Analytical models to characterize such features have to deal with the trade-off between complexity and accuracy.In this paper,we use an independent but not identically distributed(inid) stochastic process to characterize such channel behavior and show how to parameterize the inid bit error model on the basis of a trace.The proposed model has merely two parameters both having intuitive meanings and can be easily figured out from a trace.Compared with chaotic maps,the inid bit error model is simple for practical use but can still be deprived from heavy-tailed distribution in theory.Simulation results demonstrate that the inid model can match the trace,but with fewer parameters.We then propose an improvement on the inid model to capture the 'bursty' nature of channel errors,described by burst length distribution.Our theoretical analysis is supported by an experimental evaluation.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10071081).
文摘The famous Embrechts-Goldie-Veraverbeke formula shows that, in the classical Cramér-Lundberg risk model, the ruin probabilities satisfy $R(x, \infty ) \sim \rho ^{ - 1} \bar F_e (x)$ if the claim sizes are heavy-tailed, where Fe denotes the equilibrium distribution of the common d.f. F of the i.i.d. claims, ? is the safety loading coefficient of the model and the limit process is for x → ∞. In this paper we obtain a related local asymptotic relationship for the ruin probabilities. In doing this we establish two lemmas regarding the n-fold convolution of subexponential equilibrium distributions, which are of significance on their own right.
基金Surported by the Third Stage of 211 ProjectInnovative Talent Training Project of S-09110the Chongqing University Postgraduates’ Science and Innovation Fund (200911B1B0110327)
文摘In this paper, a compound Poisson risk model with time-dependent claims is studiedunder a multi-layer dividend strategy. A piecewise integro-differential equation for the Gerber- Shiu function is derived and solved. Asymptotic formulas of the ruin probability are obtained when the claim size distributions are heavy-tailed.
基金Project supported by the National Natural Science Foundation of China(No.11071182)
文摘Let (X, Xk : k ≥ 1) be a sequence of extended negatively dependent random variables with a common distribution F satisfying EX 〉 0.Let τ be a nonnegative integer-valued random variable, independent of {X, Xk : k ≥ 1}. In this paper, the authors obtain the necessary and sufficient conditions for the random sums Sτ=∑n=1^τ Xn to have a consistently varying tail when the random number τ has a heavier tail than the summands, i.e.,P(X〉x)/P(τ〉x)→0 as x →∞.
基金supported by the National Natural Science Foundation of China (No. 11171179)the Research Fund for the Doctoral Program of Higher Education of China (No. 20093705110002)
文摘Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the
基金supported by the National Natural Science Foundation of China(Grant No.10471005).
文摘We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.
文摘This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered a-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE) with tempered a-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered a-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered a-stable waiting times is more efficient in reproducing the observed behavior.
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
基金Supported by Anhui Provincial Colleges and Universities Teaching and Research Projects(2008jyxm556)
文摘This paper extends the ordinary renewal risk model to the case where the premium income process,based on a renewal counting process,is no longer a linear function;and the total claim amount process is described by a compound renewal process.For this realistic risk model,the large deviations for the claim surplus process is investigated.