The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion...The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion-based artificial immune algorithm (DCAIA) is proposed to overcome defects of the classical artificial immune al- gorithm (CAIA) in this paper. Compared with genetic algorithm (GA) and CAIA, DCAIA is good for solving the prob- lem of precocity,holding the diversity of antibody, and enhancing convergence rate.展开更多
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis...Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.展开更多
文摘The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion-based artificial immune algorithm (DCAIA) is proposed to overcome defects of the classical artificial immune al- gorithm (CAIA) in this paper. Compared with genetic algorithm (GA) and CAIA, DCAIA is good for solving the prob- lem of precocity,holding the diversity of antibody, and enhancing convergence rate.
基金supported by the National Natural Science Foundation of China(61890930-5,61533002,61603012)the Major Science and Technology Program for Water Pollution Control and Treatment of China(2018ZX07111005)+1 种基金the National Key Research and Development Project(2018YFC1900800-5)Beijing Municipal Education Commission Foundation(KM201710005025)
文摘Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.