There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate s...There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate statistical analysis method with GIS software the authors analyzed the relationships among landslides and environmental factors such as lithology,geomorphy,elevation,road and land use.Distance Evaluation Model was developed with Landslide Density(LD).And the assessment of landslide hazard of Cameron Highlands was performed.The result shows that the model has higher prediction precision.展开更多
In silico prediction of potential synthetic targets is the prerequisite for function-led discovery of new zeolites. Millions of hypothetical zeolitic structures have been predicted via various computational methods, b...In silico prediction of potential synthetic targets is the prerequisite for function-led discovery of new zeolites. Millions of hypothetical zeolitic structures have been predicted via various computational methods, but most of them are experimentally inaccessible under conventional synthetic conditions.Screening out unfeasible structures is crucial for the selection of synthetic targets with desired functions.The local interatomic distance(LID) criteria are a set of structure rules strictly obeyed by all existing zeolite framework types. Using these criteria, many unfeasible hypothetical structures have been detected. However, to calculate their LIDs, all hypothetical structures need to be fully optimized without symmetry constraints. When evaluating a large number of hypothetical structures, such calculations may become too computationally expensive due to the forbiddingly high degree of freedom. Here, we propose calculating LIDs among structures optimized with symmetry constraints and using them as new structure evaluation criteria, i.e., the LIDsymcriteria, to screen out unfeasible hypothetical structures. We find that the LIDsymcriteria can detect unfeasible structures as many as the original non-symmetric LID criteria do, yet require at least one order of magnitude less computation at the initial geometry optimization stage.展开更多
A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by...A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by GMM to divide all data sets into several health states adaptively and reasonably. The number of clusters is determined by the minimum description length principle. Thus, either the health state of the data sets or the number of the states is obtained automatically. Meanwhile, the abnormal data sets can be recognized during the clustering process and removed from the training data sets. After obtaining the health states, appropriate features are selected by DET for increasing the classification and prediction accuracy. In the prediction process, each vibration signal is decomposed into several components by empirical mode decomposition. Some common statis- tical parameters of the components are calculated first and then the features are clustered using GMM to divide the data sets into several health states and remove the abnormal data sets. Thereafter, appropriate statistical parameters of the generated components are selected using DET. Finally, least squares support vector machine is utilized to predict the RUL of rolling bearings.Experimental results indicate that the proposed method reliably predicts the RUL of rolling bearings.展开更多
基金Supported by Project of the National High Technology Research and Development Program of China(No.2002AA130020)
文摘There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate statistical analysis method with GIS software the authors analyzed the relationships among landslides and environmental factors such as lithology,geomorphy,elevation,road and land use.Distance Evaluation Model was developed with Landslide Density(LD).And the assessment of landslide hazard of Cameron Highlands was performed.The result shows that the model has higher prediction precision.
基金supported by the National Natural Science Foundation of China(Nos.21622102,21621001 and 21320102001)the National Key Research and Development Program of China(No.2016YFB0701100)
文摘In silico prediction of potential synthetic targets is the prerequisite for function-led discovery of new zeolites. Millions of hypothetical zeolitic structures have been predicted via various computational methods, but most of them are experimentally inaccessible under conventional synthetic conditions.Screening out unfeasible structures is crucial for the selection of synthetic targets with desired functions.The local interatomic distance(LID) criteria are a set of structure rules strictly obeyed by all existing zeolite framework types. Using these criteria, many unfeasible hypothetical structures have been detected. However, to calculate their LIDs, all hypothetical structures need to be fully optimized without symmetry constraints. When evaluating a large number of hypothetical structures, such calculations may become too computationally expensive due to the forbiddingly high degree of freedom. Here, we propose calculating LIDs among structures optimized with symmetry constraints and using them as new structure evaluation criteria, i.e., the LIDsymcriteria, to screen out unfeasible hypothetical structures. We find that the LIDsymcriteria can detect unfeasible structures as many as the original non-symmetric LID criteria do, yet require at least one order of magnitude less computation at the initial geometry optimization stage.
基金Acknowledgements The authors gratefully acknowledge the support of the National Key Research and Development Program of China (Grant No. 2016YFF0203400), the National Natural Science Foundation of China (Grant Nos. 51575168 and 51375152), the Project of National Science and Technology Supporting Plan (Grant No. 2015BAF32B03), and the Science Research Key Program of Educational Department of Hunan Province of China (Grant No. 16A180). The authors appreciate the support provided by the Collaborative Innovation Center of Intelligent New Energy Vehicle, the Hunan Collaborative Innovation Center for Green Car.
文摘A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by GMM to divide all data sets into several health states adaptively and reasonably. The number of clusters is determined by the minimum description length principle. Thus, either the health state of the data sets or the number of the states is obtained automatically. Meanwhile, the abnormal data sets can be recognized during the clustering process and removed from the training data sets. After obtaining the health states, appropriate features are selected by DET for increasing the classification and prediction accuracy. In the prediction process, each vibration signal is decomposed into several components by empirical mode decomposition. Some common statis- tical parameters of the components are calculated first and then the features are clustered using GMM to divide the data sets into several health states and remove the abnormal data sets. Thereafter, appropriate statistical parameters of the generated components are selected using DET. Finally, least squares support vector machine is utilized to predict the RUL of rolling bearings.Experimental results indicate that the proposed method reliably predicts the RUL of rolling bearings.