The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method wi...The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method with bias correction is proposed.This method firstly introduces fractional order distance regularized term to punish the deviation between the level set function(LSF)and the signed distance function.Secondly a series of covering template is constructed to calculate fractional derivative and its conjugate of image pixel.Thirdly introducing the offset correction term and fully using the local clustering property of image intensity,the local clustering criterion of image intensity is defined and integrated with the neighborhood center to obtain the global criterion of image segmentation.Finally,the fractional distance regularization,offset correction,and external energy constraints are combined,and the energy optimization segmentation method for noisy image is established by level set.Experimental results show that the proposed method can accurately segment the image,and effectively improve the efficiency and robustness of exiting state of the art level set related algorithms.展开更多
Liver segmentation in CT images is an important step for liver volumetry and vascular evaluation in liver pre-surgical planning. In this paper, a segmentation method based on distance regularized level set evolution(D...Liver segmentation in CT images is an important step for liver volumetry and vascular evaluation in liver pre-surgical planning. In this paper, a segmentation method based on distance regularized level set evolution(DRLSE) model was proposed, which incorporated a distance regularization term into the conventional Chan-Vese (C-V) model. In addition, the region growing method was utilized to generate the initial liver mask for each slice, which could decrease the computation time for level-set propagation. The experimental results show that the method can dramatically decrease the evolving time and keep the accuracy of segmentation. The new method is averagely 15 times faster than the method based on conventional C-V model in segmenting a slice.展开更多
The comprehensive utilization of wood is the main goal of log cutting,but knot defects increase the diffi-culty of rationally optimizing cutting.Due to the lack of real shape data of knot defects in logs,it is diffi c...The comprehensive utilization of wood is the main goal of log cutting,but knot defects increase the diffi-culty of rationally optimizing cutting.Due to the lack of real shape data of knot defects in logs,it is diffi cult for detection methods to establish a correlation between signal and defect morphology.An image-processing method is proposed for knot inversion based on distance regularized level set segmentation(DRLSE)and spatial vertex clustering,and with the inversion of the defects existing relative board position in the log,an inversion model of the knot defect is established.First,the defect edges of the top and bottom images of the boards are extracted by DRLSE and ellipse fi tting,and the major axes of the ellipses made coplanar by angle correction;second,the coordinate points of the top and bottom ellipse edges are extracted to form a spatial straight line;third,to solve the intersection dispersion of spatial straight lines and the major axis plane,K-medoids clustering is used to locate the vertex.Finally,with the vertex and the large ellipse,a 3D cone model is constructed which can be used to invert the shape of knots in the board.The experiment was conducted on ten defective larch boards,and the experimental results showed that this method can accurately invert the shapes of defects in solid wood boards with the advantages of low cost and easy operation.展开更多
针对待分割图像中含有强度不均匀性和噪声情况,传统水平集分割方法不能得到理想的分割结果且效率低、抗干扰能力弱等不足。为此,提出一种利用偏置校正的分数阶正则化水平集分割算法。该方法利用分数阶距离正则项惩罚水平集函数(level se...针对待分割图像中含有强度不均匀性和噪声情况,传统水平集分割方法不能得到理想的分割结果且效率低、抗干扰能力弱等不足。为此,提出一种利用偏置校正的分数阶正则化水平集分割算法。该方法利用分数阶距离正则项惩罚水平集函数(level set function,LSF)与带符号符号距离函数之间的偏差,抑制LSF在平坦区域的急剧反向扩散,保证LSF平稳演化。采用(Grünwald-Letnikov,G-L)分数阶导数,设计了新的分数阶导数及其共轭覆盖模板并采用改进的边缘停止函数和偏置校正,用于驱动LSF演化曲线快速地接近目标边缘。将偏置校正和分数阶距离正则化相结合用水平集函数来定义得到了能量泛函最小化的数值解。实验结果表明,所提方法对图像分割效率和鲁棒性有明显的提升。展开更多
为了实现含有复杂背景和弱边界图像的快速准确分割,传统的水平集常采用重新初始化的方法,但是这种方法存在计算量大、分割不准确等问题。因此,结合显著性区域,该文提出一种基于边缘信息与区域局部信息结合的变水平集图像快速分割方法。...为了实现含有复杂背景和弱边界图像的快速准确分割,传统的水平集常采用重新初始化的方法,但是这种方法存在计算量大、分割不准确等问题。因此,结合显著性区域,该文提出一种基于边缘信息与区域局部信息结合的变水平集图像快速分割方法。首先用元胞自动机模型检测出图像的显著性区域,得到图像的初始化边界曲线。然后,采用改进的距离正规化水平集演化(Distance Regularized Level Set Evolution,DRLSE)模型把图像的局部信息结合到变分能量方程中,用改进的能量方程去指导曲线的演化。实验结果表明,与DRLSE模型相比,提出的算法平均消耗的时间只需要前者的2.76%,且具有较高的分割准确性。展开更多
基金This work was supported by the National Natural Science Foundation of China(62071378).
文摘The existing level set segmentation methods have drawbacks such as poor convergence,poor noise resistance,and long iteration times.In this paper,a fractional order distance regularized level set segmentation method with bias correction is proposed.This method firstly introduces fractional order distance regularized term to punish the deviation between the level set function(LSF)and the signed distance function.Secondly a series of covering template is constructed to calculate fractional derivative and its conjugate of image pixel.Thirdly introducing the offset correction term and fully using the local clustering property of image intensity,the local clustering criterion of image intensity is defined and integrated with the neighborhood center to obtain the global criterion of image segmentation.Finally,the fractional distance regularization,offset correction,and external energy constraints are combined,and the energy optimization segmentation method for noisy image is established by level set.Experimental results show that the proposed method can accurately segment the image,and effectively improve the efficiency and robustness of exiting state of the art level set related algorithms.
文摘Liver segmentation in CT images is an important step for liver volumetry and vascular evaluation in liver pre-surgical planning. In this paper, a segmentation method based on distance regularized level set evolution(DRLSE) model was proposed, which incorporated a distance regularization term into the conventional Chan-Vese (C-V) model. In addition, the region growing method was utilized to generate the initial liver mask for each slice, which could decrease the computation time for level-set propagation. The experimental results show that the method can dramatically decrease the evolving time and keep the accuracy of segmentation. The new method is averagely 15 times faster than the method based on conventional C-V model in segmenting a slice.
基金supported fi nancially by the China State Forestry Administration“948”projects(2015-4-52),and Hei-longjiang Natural Science Foundation(C2017005).
文摘The comprehensive utilization of wood is the main goal of log cutting,but knot defects increase the diffi-culty of rationally optimizing cutting.Due to the lack of real shape data of knot defects in logs,it is diffi cult for detection methods to establish a correlation between signal and defect morphology.An image-processing method is proposed for knot inversion based on distance regularized level set segmentation(DRLSE)and spatial vertex clustering,and with the inversion of the defects existing relative board position in the log,an inversion model of the knot defect is established.First,the defect edges of the top and bottom images of the boards are extracted by DRLSE and ellipse fi tting,and the major axes of the ellipses made coplanar by angle correction;second,the coordinate points of the top and bottom ellipse edges are extracted to form a spatial straight line;third,to solve the intersection dispersion of spatial straight lines and the major axis plane,K-medoids clustering is used to locate the vertex.Finally,with the vertex and the large ellipse,a 3D cone model is constructed which can be used to invert the shape of knots in the board.The experiment was conducted on ten defective larch boards,and the experimental results showed that this method can accurately invert the shapes of defects in solid wood boards with the advantages of low cost and easy operation.
文摘针对待分割图像中含有强度不均匀性和噪声情况,传统水平集分割方法不能得到理想的分割结果且效率低、抗干扰能力弱等不足。为此,提出一种利用偏置校正的分数阶正则化水平集分割算法。该方法利用分数阶距离正则项惩罚水平集函数(level set function,LSF)与带符号符号距离函数之间的偏差,抑制LSF在平坦区域的急剧反向扩散,保证LSF平稳演化。采用(Grünwald-Letnikov,G-L)分数阶导数,设计了新的分数阶导数及其共轭覆盖模板并采用改进的边缘停止函数和偏置校正,用于驱动LSF演化曲线快速地接近目标边缘。将偏置校正和分数阶距离正则化相结合用水平集函数来定义得到了能量泛函最小化的数值解。实验结果表明,所提方法对图像分割效率和鲁棒性有明显的提升。
文摘为了实现含有复杂背景和弱边界图像的快速准确分割,传统的水平集常采用重新初始化的方法,但是这种方法存在计算量大、分割不准确等问题。因此,结合显著性区域,该文提出一种基于边缘信息与区域局部信息结合的变水平集图像快速分割方法。首先用元胞自动机模型检测出图像的显著性区域,得到图像的初始化边界曲线。然后,采用改进的距离正规化水平集演化(Distance Regularized Level Set Evolution,DRLSE)模型把图像的局部信息结合到变分能量方程中,用改进的能量方程去指导曲线的演化。实验结果表明,与DRLSE模型相比,提出的算法平均消耗的时间只需要前者的2.76%,且具有较高的分割准确性。