期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of the Source to Substrate Distance on the Growth,Tribological Properties and Optical Properties of Be Films
1
作者 李恺 LUO Bingchi +2 位作者 HE Yudan LI Wenqi 罗江山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期320-325,共6页
The Be films were prepared by thermal evaporation at different sources to substrate distances(SSD) on glass substrates. The decrease of SSD from 90 mm to 50 mm caused the increase of substrate temperature and the ri... The Be films were prepared by thermal evaporation at different sources to substrate distances(SSD) on glass substrates. The decrease of SSD from 90 mm to 50 mm caused the increase of substrate temperature and the rising density of incident Be atoms, thus the properties of Be films greatly changed accordingly. The experimental results showed that the grain diameter in the Be films transited from below 100 nm to 300 nm, the film growth rate increased from 2.35 nm/min to 4.73 nm/min and the roughness increased from 7 nm to 49 nm. The performance study suggested that the friction coefficient of Be films increased from 0.13 to 0.27 and was related to the surface roughness and inner structure, the near-infrared reflectance of Be films increased from 40% to 85% with the increase of wavelength and concurrently decreased with the decrease of SSD, respectively. The performance study indicated that the Be film had the potential application in specific near-infrared reflectance optical system. 展开更多
关键词 Be films thermal evaporation source to substrate distance film growth properties
下载PDF
Vapor intrusion in buildings: Development of semi-empirical models including lateral separation between the building and the pollution source
2
作者 Juan Sebastian Rios Mora Thierno Diallo +2 位作者 Bernard Collignan Marc Abadie Karim Limam 《Building Simulation》 SCIE EI CSCD 2022年第12期2031-2049,共19页
Future constructions in the context of the industrial wastelands reuse may be exposed to Vapor Intrusion(VI).VI can be evaluated by combining in-situ measures and analytical models to evaluate exposure risk in future ... Future constructions in the context of the industrial wastelands reuse may be exposed to Vapor Intrusion(VI).VI can be evaluated by combining in-situ measures and analytical models to evaluate exposure risk in future indoor environments.However,the assumptions in the existing models may reduce their accuracy when they do not meet the characteristics of real situations.Wrong estimations of indoor concentration levels may lead to inappropriate solutions against VI.In this context,new semi-empirical models(SEM)are proposed in order to better specify pollution scenarios and thus increase the accuracy of VI estimations.This development is based on a parametric study(numerical CFD)and a dimensionless analysis combined to existing VI models that consider a continuous source distribution in the soil.These expressions allow to better take into account the source position in the soil(i.e.depth and lateral source/building separation),soil properties(air permeability,diffusion coefficient of the pollutant,…)and building features(building foundation,indoor pressure,air exchange rate,…)in the estimation of indoor concentration levels.The obtained results with the proposed SEM were compared with a numerical CFD model and available experimental data,showing good accuracy in the estimation of VI.Given the advantages of these new models,they can provide better precision in the health risk assessments associated with VI.Furthermore,these expressions can be easily integrated into building ventilation codes allowing to consider air exchange rate and indoor pressure variations over time. 展开更多
关键词 indoor air quality lateral source/building distance polluted soils semi-empirical models vapor intrusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部