The widespread organic pollutants in wastewater are one of the global environmental problems.Advanced oxidation processes(AOPs)are widely used because of their characteristics of high efficiency and strong oxidation.H...The widespread organic pollutants in wastewater are one of the global environmental problems.Advanced oxidation processes(AOPs)are widely used because of their characteristics of high efficiency and strong oxidation.However,AOPs may have some defects,such as incomplete mineralization of organic pollutants and the generation of toxic by-products during the degradation process,thus it is essential to seek efficient and green wastewater treatment technologies.Coupling different AOPs or other processes is beneficial for the mineralization of pollutants and reduces ecological risks to the environment.It is worth noting that carbonaceous materials(CMs)have received widespread attention and application in the degradation of organic pollutants in water by advanced oxidation coupling processes(C-AOPs)due to their excellent physicochemical properties in recent years.However,the behaviors and mechanisms of C-AOPs based on CMs on the degradation of organic pollutants are still unknown.Therefore,it is essential to comprehensively summarize the recent research progress.In this review,the applications of different CMs in C-AOPs were reviewed first.Secondly,the synergistic mechanisms of the C-AOPs based on different CMs were discussed.Then,toxic intermediates were explored and important toxicity assessment methods were proposed.Finally,the application potential of the C-AOPs in the future and the challenges were proposed.This review provides an important reference for the application and optimization of the C-AOPs in organic wastewater treatment in the future.展开更多
Carbon-mediated persulfate advanced oxidation processes(PS-AOPs)are appealing in contaminant remediation.For the first time,S,B-co-doped carbon-based persulfate activators were synthesized through direct carbonization...Carbon-mediated persulfate advanced oxidation processes(PS-AOPs)are appealing in contaminant remediation.For the first time,S,B-co-doped carbon-based persulfate activators were synthesized through direct carbonization of sodium lignosulfonate and boric acid.By degrading sulfamethoxazole(SMX),CSB-750 obtained 98.7%removal and 81.4%mineralization within 30 min.In comparison with solo S or B doping,S and B co-doped carbon showed the coupling effect for enhanced catalysis.The rate constant(kobs)of 0.1679 min^(-1)was 22.38-and 279.83-fold higher than those of CS-750(0.0075 min^(-1))and CB-750(0.0006 min^(-1)),respectively.The degradation was efficient at strong acidic and weak basic conditions(pH 3-9).Substantial inhibition effect was presented at strong basic condition(pH 10.95)and in presence of CO_(3)^(2-).The CO_(3)^(2-)-caused inhibition was the combined result of the cooperation of pH and quenching O_(2)^(·-).Thiophene sulfur,BC_(3),BC_(2)O,and structural defects were identified as the active sites for PS activation.Radical and nonradical pathways were both involved in the CSB-750/PS/SMX system,where^(1)O_(2)dominated the degradation,SO_(4)^(·-),·OH and direct electron transfer played the subordinate role,and O_(2)^(·-)served as a precursor for the formation of partial^(1)O_(2).The toxicity of degradation system,the effect of real water matrix,and the reusability of carbocatalysts were comprehensively analyzed.Nine possible degradation pathways were proposed.This work focuses on the catalytic performance improvement through the coupling effect of S,B co-doping,and develops an advanced heteroatom doping system to fabricate carbonaceous persulfate activators.展开更多
本文对UCCPT公司的OCM(Oxidative Coupling of Methane,一步法制乙烯)工艺以及O2-CO2燃气蒸汽联合动力工艺进行了模拟计算与分析,提出了一个集乙烯生产与动力输出为一体的多联产工艺。在乙烯产率和净输出电功相同的情况下,相对于单独生...本文对UCCPT公司的OCM(Oxidative Coupling of Methane,一步法制乙烯)工艺以及O2-CO2燃气蒸汽联合动力工艺进行了模拟计算与分析,提出了一个集乙烯生产与动力输出为一体的多联产工艺。在乙烯产率和净输出电功相同的情况下,相对于单独生产烯烃的OCM工艺和O2-CO2动力系统,新工艺的天然气与氧气消耗量的减少率分别为4.3%和3.2%;电、蒸汽和冷却水的消耗减少率分别为6.1%、100%和9.9%。展开更多
基金Project of Science and Technology Department of Guizhou Province[ZK(2022)016]Special Fund for Outstanding Youth Talents of Science and Technology of Guizhou Province[YQK[2023]014]+1 种基金Special Research Fund of Natural Science(Special Post)of Guizhou University[(2020)01]Key Cultivation Program of Guizhou University[2019(08)].
文摘The widespread organic pollutants in wastewater are one of the global environmental problems.Advanced oxidation processes(AOPs)are widely used because of their characteristics of high efficiency and strong oxidation.However,AOPs may have some defects,such as incomplete mineralization of organic pollutants and the generation of toxic by-products during the degradation process,thus it is essential to seek efficient and green wastewater treatment technologies.Coupling different AOPs or other processes is beneficial for the mineralization of pollutants and reduces ecological risks to the environment.It is worth noting that carbonaceous materials(CMs)have received widespread attention and application in the degradation of organic pollutants in water by advanced oxidation coupling processes(C-AOPs)due to their excellent physicochemical properties in recent years.However,the behaviors and mechanisms of C-AOPs based on CMs on the degradation of organic pollutants are still unknown.Therefore,it is essential to comprehensively summarize the recent research progress.In this review,the applications of different CMs in C-AOPs were reviewed first.Secondly,the synergistic mechanisms of the C-AOPs based on different CMs were discussed.Then,toxic intermediates were explored and important toxicity assessment methods were proposed.Finally,the application potential of the C-AOPs in the future and the challenges were proposed.This review provides an important reference for the application and optimization of the C-AOPs in organic wastewater treatment in the future.
基金financially supported by the GuangDong Basic and Applied Basic Research Foundation(Nos.2019A1515110649,2020A1515110271,2019A1515110244)the National Natural,Science Fund of China(No.51908127)+1 种基金the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2017)the Research Team in Dongguan University of Technology(No.TDYB2019013)。
文摘Carbon-mediated persulfate advanced oxidation processes(PS-AOPs)are appealing in contaminant remediation.For the first time,S,B-co-doped carbon-based persulfate activators were synthesized through direct carbonization of sodium lignosulfonate and boric acid.By degrading sulfamethoxazole(SMX),CSB-750 obtained 98.7%removal and 81.4%mineralization within 30 min.In comparison with solo S or B doping,S and B co-doped carbon showed the coupling effect for enhanced catalysis.The rate constant(kobs)of 0.1679 min^(-1)was 22.38-and 279.83-fold higher than those of CS-750(0.0075 min^(-1))and CB-750(0.0006 min^(-1)),respectively.The degradation was efficient at strong acidic and weak basic conditions(pH 3-9).Substantial inhibition effect was presented at strong basic condition(pH 10.95)and in presence of CO_(3)^(2-).The CO_(3)^(2-)-caused inhibition was the combined result of the cooperation of pH and quenching O_(2)^(·-).Thiophene sulfur,BC_(3),BC_(2)O,and structural defects were identified as the active sites for PS activation.Radical and nonradical pathways were both involved in the CSB-750/PS/SMX system,where^(1)O_(2)dominated the degradation,SO_(4)^(·-),·OH and direct electron transfer played the subordinate role,and O_(2)^(·-)served as a precursor for the formation of partial^(1)O_(2).The toxicity of degradation system,the effect of real water matrix,and the reusability of carbocatalysts were comprehensively analyzed.Nine possible degradation pathways were proposed.This work focuses on the catalytic performance improvement through the coupling effect of S,B co-doping,and develops an advanced heteroatom doping system to fabricate carbonaceous persulfate activators.
文摘本文对UCCPT公司的OCM(Oxidative Coupling of Methane,一步法制乙烯)工艺以及O2-CO2燃气蒸汽联合动力工艺进行了模拟计算与分析,提出了一个集乙烯生产与动力输出为一体的多联产工艺。在乙烯产率和净输出电功相同的情况下,相对于单独生产烯烃的OCM工艺和O2-CO2动力系统,新工艺的天然气与氧气消耗量的减少率分别为4.3%和3.2%;电、蒸汽和冷却水的消耗减少率分别为6.1%、100%和9.9%。