Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of ...Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of metal in the porphyrins core macrocycle may affect the geometry. The analysis of twists and angles has shown two kinds of distortions: external [T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] and internal [T(N<sup>m</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(N<sup>n</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] with averages of [+6°and –6°] and [–5°and +5°], respectively. In the meso-substituted case, the external and internal twists C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X and N-C<sup>α</sup>-C<sup>meso</sup>-X, respectively are oppositely orientated. Similar effect is observed in meso-unsubstituted of C<sup>β</sup>-C<sup>α</sup>- C<sup>meso</sup>-H and N-C<sup>α</sup>-C<sup>meso</sup>-H. However, the external distortions are more significant than internal. Considering the same order, the limit of distortions is [97°and 132°(–48°)] for external and [91°(–89°) and 52°] for internal. In the two cases, the substituents have opposite directions of distortions. The meso-substituted porphyrins have a high limit of twisting than usubstituted one, depending of the weight of substituents. The average of the bond angular deformations is 168°, almost planar. However, the limit of angular deformation is 94°.展开更多
A graph as the new engineering method for estimate the safety of bulging deformation of coke tower is proposed. Through stresses analysis of circumferential weld of coke tower and comparing the stresses produced by pr...A graph as the new engineering method for estimate the safety of bulging deformation of coke tower is proposed. Through stresses analysis of circumferential weld of coke tower and comparing the stresses produced by pressure with heat stress of steady state, residual stress, bending stress produced by both itself weight and wind loads, it showed that the stresses produced by pressure on the angle distortion are the main factor of equivalent stress of the combined stress. After comparing four kinds of stress controlling conditions, the relation to stress with depth of angular distortion, grade of curvature of angular distortion and half of region of angular distortion has been inferred. Graph of deformation allowable value of coke tower for different condition by angular distortion and half of region of angular distortion has been plotted. The five steps for its engineering use have been explained. The lighter the grade of curvature is, the larger of bulge allowance, may be, and the bigger of depth of angular distortion may pose too. For the coke tower with a popular structure of Dg 5 400 mmx28 mm, the result by graph is nearly more than the result of two formulas formed by other research, the error is less than 7.0%. But, the graph can be easily applied to different size of angular distortion.展开更多
文摘Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of metal in the porphyrins core macrocycle may affect the geometry. The analysis of twists and angles has shown two kinds of distortions: external [T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] and internal [T(N<sup>m</sup>-C<sup>α</sup>-C<sup>meso</sup>-X<sup>n</sup>) and T(N<sup>n</sup>-C<sup>α</sup>-C<sup>meso</sup>-C<sup>α</sup>)] with averages of [+6°and –6°] and [–5°and +5°], respectively. In the meso-substituted case, the external and internal twists C<sup>β</sup>-C<sup>α</sup>-C<sup>meso</sup>-X and N-C<sup>α</sup>-C<sup>meso</sup>-X, respectively are oppositely orientated. Similar effect is observed in meso-unsubstituted of C<sup>β</sup>-C<sup>α</sup>- C<sup>meso</sup>-H and N-C<sup>α</sup>-C<sup>meso</sup>-H. However, the external distortions are more significant than internal. Considering the same order, the limit of distortions is [97°and 132°(–48°)] for external and [91°(–89°) and 52°] for internal. In the two cases, the substituents have opposite directions of distortions. The meso-substituted porphyrins have a high limit of twisting than usubstituted one, depending of the weight of substituents. The average of the bond angular deformations is 168°, almost planar. However, the limit of angular deformation is 94°.
文摘A graph as the new engineering method for estimate the safety of bulging deformation of coke tower is proposed. Through stresses analysis of circumferential weld of coke tower and comparing the stresses produced by pressure with heat stress of steady state, residual stress, bending stress produced by both itself weight and wind loads, it showed that the stresses produced by pressure on the angle distortion are the main factor of equivalent stress of the combined stress. After comparing four kinds of stress controlling conditions, the relation to stress with depth of angular distortion, grade of curvature of angular distortion and half of region of angular distortion has been inferred. Graph of deformation allowable value of coke tower for different condition by angular distortion and half of region of angular distortion has been plotted. The five steps for its engineering use have been explained. The lighter the grade of curvature is, the larger of bulge allowance, may be, and the bigger of depth of angular distortion may pose too. For the coke tower with a popular structure of Dg 5 400 mmx28 mm, the result by graph is nearly more than the result of two formulas formed by other research, the error is less than 7.0%. But, the graph can be easily applied to different size of angular distortion.