The crystal structure of ludwigite from Vranovac ore deposit (Boranja Mt., Serbia) was refined using the X-ray powder diffraction (XRPD) Rietveld method in the space group Pbam to a final RB=7.45% and RF=5.26%. It...The crystal structure of ludwigite from Vranovac ore deposit (Boranja Mt., Serbia) was refined using the X-ray powder diffraction (XRPD) Rietveld method in the space group Pbam to a final RB=7.45% and RF=5.26%. It has the unit cell dimensions of: a=9.2515(2) A; b=12.3109(2) A; c=3.03712 (7) A; and V=345.91(1) A3. The calculated distances and angles are mostly in good agreement with the Mg2+-Fe2+ substitutions across the M(1) and M(3) sites, as well as with the Fe3+-AI3+ replacement in the M(4) site. However, the mean observed M(2)-O distance is considerably shorter than prescribed, due to a slight increase of the Fe3+ content in the M(2) site. Such replacement was compensated by slight increase of the Fe2+ content in the M(4) site, resulting in the (Mg1.4sFe2+o.46Fe3+o.osMno.o2)2.o1 (Fe3+o.94Fe2+0.04Al0.02)1.00B1.00Os composition. The formation temperature was estimated to be about 500- 600C. The influences of the various chemical compositions to the crystallographic parameters, M-O distances, M(3) and M(4) sites shift, distortion parameters and estimated valences, were also studied and compared with other reference samples.展开更多
A methodology has been developed to generate a non-uniform/distoited inlet flow field to test a gas turbine engine in ground test facilities.The distorted flow field is generated by positioning radial and circumferent...A methodology has been developed to generate a non-uniform/distoited inlet flow field to test a gas turbine engine in ground test facilities.The distorted flow field is generated by positioning radial and circumferential strips of varying widths upstream of the Aerodynamic Interface Plane.The interacting wakes from these strips are used to generate a given target flow field.The approximate superposition of these wakes is investigated and used to construct the strip arrangement which is subsequently validated by computing the flow field by solving the Navier-Stokes equations.The strip geometry designed using the present methodology is able to produce the target Mach number distribution with a root-mean-square error of 5.06%.展开更多
文摘The crystal structure of ludwigite from Vranovac ore deposit (Boranja Mt., Serbia) was refined using the X-ray powder diffraction (XRPD) Rietveld method in the space group Pbam to a final RB=7.45% and RF=5.26%. It has the unit cell dimensions of: a=9.2515(2) A; b=12.3109(2) A; c=3.03712 (7) A; and V=345.91(1) A3. The calculated distances and angles are mostly in good agreement with the Mg2+-Fe2+ substitutions across the M(1) and M(3) sites, as well as with the Fe3+-AI3+ replacement in the M(4) site. However, the mean observed M(2)-O distance is considerably shorter than prescribed, due to a slight increase of the Fe3+ content in the M(2) site. Such replacement was compensated by slight increase of the Fe2+ content in the M(4) site, resulting in the (Mg1.4sFe2+o.46Fe3+o.osMno.o2)2.o1 (Fe3+o.94Fe2+0.04Al0.02)1.00B1.00Os composition. The formation temperature was estimated to be about 500- 600C. The influences of the various chemical compositions to the crystallographic parameters, M-O distances, M(3) and M(4) sites shift, distortion parameters and estimated valences, were also studied and compared with other reference samples.
文摘A methodology has been developed to generate a non-uniform/distoited inlet flow field to test a gas turbine engine in ground test facilities.The distorted flow field is generated by positioning radial and circumferential strips of varying widths upstream of the Aerodynamic Interface Plane.The interacting wakes from these strips are used to generate a given target flow field.The approximate superposition of these wakes is investigated and used to construct the strip arrangement which is subsequently validated by computing the flow field by solving the Navier-Stokes equations.The strip geometry designed using the present methodology is able to produce the target Mach number distribution with a root-mean-square error of 5.06%.