The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandw...The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (〈10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber Brillouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 Ion G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.展开更多
For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain sa...For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.展开更多
We show theoretically and experimentally that Raman PDG can be formulated as a function of the pump light DOP and the transmission fiber PMD. Raman PDG is sufficiently reduced thanks to the inevitable fiber PMD.
对S波段的色散补偿型分布式光纤拉曼放大器(FRA)进行了研制。本放大器中采用了先进的光纤拉曼激光器作为抽运源,并对5 km DCF-50 km G652光纤色散补偿型分布式FRA分别进行了前向抽运和后向抽运,测量了其前向和后向增益光谱和噪声谱,结...对S波段的色散补偿型分布式光纤拉曼放大器(FRA)进行了研制。本放大器中采用了先进的光纤拉曼激光器作为抽运源,并对5 km DCF-50 km G652光纤色散补偿型分布式FRA分别进行了前向抽运和后向抽运,测量了其前向和后向增益光谱和噪声谱,结果表明后向抽运方式在增益和噪声特性方面优于前向抽运方式。对色散补偿型分布式FRA在后向抽运方式下的增益和噪声指数随抽运功率的变化而变化的规律进行了实验研究,结果表明其增益随抽运功率的增大而增大,噪声指数随增益的增大而减小。为比较色散补偿型分布式FRA和分布式FRA在增益和噪声方面的性能,分别测量了上述两种光纤拉曼放大器在后向抽运方式下的增益谱和噪声指数谱,结果表明: 5 km DCF-50 km G652光纤制成的色散补偿型分布式FRA的增益和噪声特性,均优于由50km-G652光纤制成的分布式FRA。本文对实验结果进行了理论分析。展开更多
基金supported by the National Natural Science Foundation under Grant No. 60608009Zhejiang Science Foundation under Grant No. Y107091.
文摘The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (〈10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber Brillouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 Ion G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.
基金Project supported by the National Natural Science Foundation of China(Grant No.61177073)the Major Application Basic Research Project of National University of Defense Technology,China(Grant No.ZDYYJCYJ20140701)
文摘For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.
文摘We show theoretically and experimentally that Raman PDG can be formulated as a function of the pump light DOP and the transmission fiber PMD. Raman PDG is sufficiently reduced thanks to the inevitable fiber PMD.
文摘对S波段的色散补偿型分布式光纤拉曼放大器(FRA)进行了研制。本放大器中采用了先进的光纤拉曼激光器作为抽运源,并对5 km DCF-50 km G652光纤色散补偿型分布式FRA分别进行了前向抽运和后向抽运,测量了其前向和后向增益光谱和噪声谱,结果表明后向抽运方式在增益和噪声特性方面优于前向抽运方式。对色散补偿型分布式FRA在后向抽运方式下的增益和噪声指数随抽运功率的变化而变化的规律进行了实验研究,结果表明其增益随抽运功率的增大而增大,噪声指数随增益的增大而减小。为比较色散补偿型分布式FRA和分布式FRA在增益和噪声方面的性能,分别测量了上述两种光纤拉曼放大器在后向抽运方式下的增益谱和噪声指数谱,结果表明: 5 km DCF-50 km G652光纤制成的色散补偿型分布式FRA的增益和噪声特性,均优于由50km-G652光纤制成的分布式FRA。本文对实验结果进行了理论分析。