This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows t...This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.展开更多
False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Ba...False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Based on this, we propose a diffusion least-mean-square algorithm based on the generalized maximum correntropy criterion(GMCC-DLMS)for multi-task networks. The algorithm achieves gratifying estimation results. Even more, compared to the related work,it has better robustness when the number of attacked nodes increases. Moreover, the assumption about the number of attacked nodes is relaxed, which is applicable to multi-task environments. In addition, the performance of the proposed GMCC-DLMS algorithm is analyzed in the mean and mean-square senses. Finally, simulation experiments confirm the performance and effectiveness against FDI attacks of the algorithm.展开更多
This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the sy...This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the system state and attack signal simultaneously.Specifically,the proposed two observers are applicable to deal with the cases in the presence and absence of time delays during network communication.It is also shown that the proposed observers can ensure the attack estimations from different agents asymptotically converge to the same value.Sufficient conditions for guaranteeing the asymptotic convergence of the estimation errors are derived.Simulation examples are finally provided to demonstrate the effectiveness of the proposed results.展开更多
This paper introduces several related distributed algorithms,generalised from the celebrated belief propagation algorithm for statistical learning.These algorithms are suitable for a class of computational problems in...This paper introduces several related distributed algorithms,generalised from the celebrated belief propagation algorithm for statistical learning.These algorithms are suitable for a class of computational problems in largescale networked systems,ranging from average consensus,sensor fusion,distributed estimation,distributed optimisation,distributed control,and distributed learning.By expressing the underlying computational problem as a sparse linear system,each algorithm operates at each node of the network graph and computes iteratively the desired solution.The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem.A number of examples are presented to illustrate their applications.Also introduced is a message-passing algorithm for distributed convex optimisation.展开更多
Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in...Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in each machine can be either the same or different and either fixed or varying to the total sample size, its consistency and asymptotic normality are discussed. Simulation studies are particularized to show the new estimator performs almost in line with the trimmed Hill estimator.展开更多
The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/op...The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.展开更多
This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contra...This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.展开更多
This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to ...This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.展开更多
This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent apert...This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.展开更多
The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In t...The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time.展开更多
Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring system...Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.展开更多
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new...Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.展开更多
Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have th...Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.展开更多
The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC...The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.展开更多
In this paper,we investigate the distributed estimation problem of continuous-time stochastic dynamic systems over sensor networks when both the system order and parameters are unknown.We propose a local information c...In this paper,we investigate the distributed estimation problem of continuous-time stochastic dynamic systems over sensor networks when both the system order and parameters are unknown.We propose a local information criterion(LIC)based on the L_(0)penalty term.By minimizing LIC at the diffusion time instant and utilizing the continuous-time diffusion least squares algorithm,we obtain a distributed estimation algorithm to simultaneously estimate the unknown order and the parameters of the system.By dealing with the effect of the system noises and the coupling relationship between estimation of system orders and parameters,we establish the almost sure convergence results of the proposed distributed estimation algorithm.Furthermore,we give a simulation example to verify the effectiveness of the distributed algorithm in estimating the system order and parameters.展开更多
In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA...In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.展开更多
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou...A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.展开更多
In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineerin...In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.展开更多
This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general he...This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.展开更多
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
文摘This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.
文摘False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Based on this, we propose a diffusion least-mean-square algorithm based on the generalized maximum correntropy criterion(GMCC-DLMS)for multi-task networks. The algorithm achieves gratifying estimation results. Even more, compared to the related work,it has better robustness when the number of attacked nodes increases. Moreover, the assumption about the number of attacked nodes is relaxed, which is applicable to multi-task environments. In addition, the performance of the proposed GMCC-DLMS algorithm is analyzed in the mean and mean-square senses. Finally, simulation experiments confirm the performance and effectiveness against FDI attacks of the algorithm.
基金supported by the Fundamental Research Funds for the Central Universities(buctrc202201)High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology。
文摘This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the system state and attack signal simultaneously.Specifically,the proposed two observers are applicable to deal with the cases in the presence and absence of time delays during network communication.It is also shown that the proposed observers can ensure the attack estimations from different agents asymptotically converge to the same value.Sufficient conditions for guaranteeing the asymptotic convergence of the estimation errors are derived.Simulation examples are finally provided to demonstrate the effectiveness of the proposed results.
基金supported in part by the of National Natural Science Foundation of China(U21A20476,U1911401,U22A20221,62273100,62073090).
文摘This paper introduces several related distributed algorithms,generalised from the celebrated belief propagation algorithm for statistical learning.These algorithms are suitable for a class of computational problems in largescale networked systems,ranging from average consensus,sensor fusion,distributed estimation,distributed optimisation,distributed control,and distributed learning.By expressing the underlying computational problem as a sparse linear system,each algorithm operates at each node of the network graph and computes iteratively the desired solution.The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem.A number of examples are presented to illustrate their applications.Also introduced is a message-passing algorithm for distributed convex optimisation.
文摘Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in each machine can be either the same or different and either fixed or varying to the total sample size, its consistency and asymptotic normality are discussed. Simulation studies are particularized to show the new estimator performs almost in line with the trimmed Hill estimator.
文摘The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.
基金supported by the Agence Nationale de la Recherche(ANR)(contract“ANR-17-EURE-0002”)by the Region of Bourgogne Franche-ComtéCADRAN Projectsupported by the European Research Council(ERC)project HYPATIA under the European Union's Horizon 2020 research and innovation programme.Grant agreement n.835294。
文摘This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.
文摘This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)+2 种基金the Foundation of Tsinghua University(20101081772)the Foundation of National Laboratory of Information Control Technology for Communication System of Chinathe Foundation of National Information Control Laboratory
文摘This paper studies the estimation performance of the coherent processing parameter (CPP), including time delay differences and phase synchronization errors among different apertures of the distributed coherent aperture radar (DCAR). Firstly, three architectures of signal processing in the DCAR are introduced. Secondly, the closed-form Cramer-Rao bound (CRB) of the CPP estimation is derived and compared. Then, the closed-form CRB is verified by numerical simulations. Finally, when the next generation radar works in a fully coherent mode, the closed-form signal-to-noise ratio (SNR) gain of the three architectures is presented.
文摘The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time.
基金This project is supported by National Natural Science Foundation of China(No.50335020,No.50205009)Laboratory of Intelligence Manufacturing Technology of Ministry of Education of China(No.J100301).
文摘Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.
文摘Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm.
文摘Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61973277)in part by the Zhejiang Provincial Natural Science Foundation of China(No.LR20F030004)in part by the Major Key Project of PCL(No.PCL2021A09).
文摘The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.
基金supported by the National Key R&D Program of China(No.2018YFA0703800)the Natural Science Foundation of China(No.T2293770)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA27000000)the National Science Foundation of Shandong Province(No.ZR2020ZD26).
文摘In this paper,we investigate the distributed estimation problem of continuous-time stochastic dynamic systems over sensor networks when both the system order and parameters are unknown.We propose a local information criterion(LIC)based on the L_(0)penalty term.By minimizing LIC at the diffusion time instant and utilizing the continuous-time diffusion least squares algorithm,we obtain a distributed estimation algorithm to simultaneously estimate the unknown order and the parameters of the system.By dealing with the effect of the system noises and the coupling relationship between estimation of system orders and parameters,we establish the almost sure convergence results of the proposed distributed estimation algorithm.Furthermore,we give a simulation example to verify the effectiveness of the distributed algorithm in estimating the system order and parameters.
基金The National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.
基金National Natural Science Foundation of China (10377015)
文摘A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
基金Supported by the National Basic Research Program of China (2012CB720500)the National Natural Science Foundation of China (60974008)
文摘In this paper, an improved hybrid differential evolution-estimation of distribution algorithm (IHDE-EDA) is proposed for nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) models in engineering optimization fields. In order to improve the global searching ability and convergence speed, IHDE-EDA takes full advantage of differential information and global statistical information extracted respectively from differential evolution algorithm and annealing mechanism-embedded estimation of distribution algorithm. Moreover, the feasibility rules are used to handle constraints, which do not require additional parameters and can guide the population to the feasible region quickly. The effectiveness of hybridization mechanism of IHDE-EDA is first discussed, and then simulation and comparison based on three benchmark problems demonstrate the efficiency, accuracy and robustness of IHDE-EDA. Finally, optimization on an industrial-size scheduling of two-pipeline crude oil blending problem shows the practical applicability of IHDE-EDA.
文摘This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.