False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Ba...False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Based on this, we propose a diffusion least-mean-square algorithm based on the generalized maximum correntropy criterion(GMCC-DLMS)for multi-task networks. The algorithm achieves gratifying estimation results. Even more, compared to the related work,it has better robustness when the number of attacked nodes increases. Moreover, the assumption about the number of attacked nodes is relaxed, which is applicable to multi-task environments. In addition, the performance of the proposed GMCC-DLMS algorithm is analyzed in the mean and mean-square senses. Finally, simulation experiments confirm the performance and effectiveness against FDI attacks of the algorithm.展开更多
This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows t...This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.展开更多
This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the sy...This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the system state and attack signal simultaneously.Specifically,the proposed two observers are applicable to deal with the cases in the presence and absence of time delays during network communication.It is also shown that the proposed observers can ensure the attack estimations from different agents asymptotically converge to the same value.Sufficient conditions for guaranteeing the asymptotic convergence of the estimation errors are derived.Simulation examples are finally provided to demonstrate the effectiveness of the proposed results.展开更多
The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/op...The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.展开更多
The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this pa...The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.展开更多
Online estimation of electromechanical oscillation parameters provides essential information to prevent system instability and blackout and helps to identify event categories and locations.We formulate the problem as ...Online estimation of electromechanical oscillation parameters provides essential information to prevent system instability and blackout and helps to identify event categories and locations.We formulate the problem as a state space model and employ the extended Kalman filter to estimate oscillation frequencies and damping factors directly based on data from phasor measurement units.Due to considerations of communication burdens and privacy concerns,a fully distributed algorithm is proposed using diffusion extended Kalman filter.The effectiveness of proposed algorithms is confirmed by both simulated and real data collected during events in State Grid Jiangsu Electric Power Company.展开更多
This paper considers the distributed estimation of a source parameter using quantized sensor observations in a wireless sensor network with noisy channels. Repetition codes are used to transmit quantization bits of se...This paper considers the distributed estimation of a source parameter using quantized sensor observations in a wireless sensor network with noisy channels. Repetition codes are used to transmit quantization bits of sensor observations and a quasi best linear unbiased estimate is constructed to estimate the source parameter. Simulations show that the estimation scheme achieves a better power and spectral efficiency than the previous scheme.展开更多
This paper describes a distributed estimation scheme (DES) for a bandwidth constrained ad hoc sensor network. The DES is universal in the sense that operations on all sensors are identical and independent of noise d...This paper describes a distributed estimation scheme (DES) for a bandwidth constrained ad hoc sensor network. The DES is universal in the sense that operations on all sensors are identical and independent of noise distribution. The scheme requires each sensor to transmit just a 1-bit message per observation. Simulation results show that the scheme achieves much better mean-squares error (MSE) performance than the simplified isotropic universal DES and even outperforms the isotropic universal DES which requires more than twice the bandwidth of this scheme.展开更多
This paper describes the effect of channel estimation error (CEE) on the performance of distributed estimations of an unknown parameter in a wireless sensor network. Both the classical and Bayesian estimators are de...This paper describes the effect of channel estimation error (CEE) on the performance of distributed estimations of an unknown parameter in a wireless sensor network. Both the classical and Bayesian estimators are derived to mitigate the adverse effects caused by the CEE. Power scheduling among sensors and the power ratio between the training and data transmission at each individual node are optimized by directly minimizing the final average mean squared error to compensate for the CEE. A closed-form power scheduling policy is given for a homogeneous environment, which shows that more than 50% of the power should be allocated to sensor observation transmissions. For an inhomogeneous environment, a multilevel waterfilling type solution is developed for the power scheduling among sensors for only the sum power constraint with a "cave" waterfilling solution for both the sum and individual power constraints. Simulations show that the proposed power scheduling schemes achieve better performance than the equal power scheduling scheme.展开更多
This paper introduces several related distributed algorithms,generalised from the celebrated belief propagation algorithm for statistical learning.These algorithms are suitable for a class of computational problems in...This paper introduces several related distributed algorithms,generalised from the celebrated belief propagation algorithm for statistical learning.These algorithms are suitable for a class of computational problems in largescale networked systems,ranging from average consensus,sensor fusion,distributed estimation,distributed optimisation,distributed control,and distributed learning.By expressing the underlying computational problem as a sparse linear system,each algorithm operates at each node of the network graph and computes iteratively the desired solution.The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem.A number of examples are presented to illustrate their applications.Also introduced is a message-passing algorithm for distributed convex optimisation.展开更多
This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to ...This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.展开更多
Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring system...Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.展开更多
In this paper,distributed estimation of high-dimensional sparse precision matrix is proposed based on the debiased D-trace loss penalized lasso and the hard threshold method when samples are distributed into different...In this paper,distributed estimation of high-dimensional sparse precision matrix is proposed based on the debiased D-trace loss penalized lasso and the hard threshold method when samples are distributed into different machines for transelliptical graphical models.At a certain level of sparseness,this method not only achieves the correct selection of non-zero elements of sparse precision matrix,but the error rate can be comparable to the estimator in a non-distributed setting.The numerical results further prove that the proposed distributed method is more effective than the usual average method.展开更多
The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC...The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.展开更多
Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in...Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in each machine can be either the same or different and either fixed or varying to the total sample size, its consistency and asymptotic normality are discussed. Simulation studies are particularized to show the new estimator performs almost in line with the trimmed Hill estimator.展开更多
This paper deals with distributed state estimation problem for discrete time-varying systems over binary sensor networks,where every binary sensor is equipped with an energy harvester.The input of every binary sensor ...This paper deals with distributed state estimation problem for discrete time-varying systems over binary sensor networks,where every binary sensor is equipped with an energy harvester.The input of every binary sensor considers the randomly occurring missing measurements.The differences between the real and estimated inputs of binary sensor are employed to derive useful information in order to address the insufficient information for estimation purpose.The information from neighboring nodes is transmitted only if its energy level is positive,where a random variable is introduced to formulate the energy level.By means of the available information,distributed estimator is constructed for each binary sensor and the desirable performance constraints is given for the dynamic characteristics of estimation errors within anite time horizon.Sucient conditions are established for the existence of desired distribution estimation quantities through local performance analysis methods.Also,the desired distributed estimator gains are calculated recursively,which means the desirable scalability.Ultimately,the viability and efficiency of the distributed scheme are exhibited through a practical illustration.展开更多
In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA...In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.展开更多
A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find ou...A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.展开更多
The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In t...The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time.展开更多
文摘False data injection(FDI) attacks are common in the distributed estimation of multi-task network environments, so an attack detection strategy is designed by combining the generalized maximum correntropy criterion. Based on this, we propose a diffusion least-mean-square algorithm based on the generalized maximum correntropy criterion(GMCC-DLMS)for multi-task networks. The algorithm achieves gratifying estimation results. Even more, compared to the related work,it has better robustness when the number of attacked nodes increases. Moreover, the assumption about the number of attacked nodes is relaxed, which is applicable to multi-task environments. In addition, the performance of the proposed GMCC-DLMS algorithm is analyzed in the mean and mean-square senses. Finally, simulation experiments confirm the performance and effectiveness against FDI attacks of the algorithm.
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
文摘This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted.
基金supported by the Fundamental Research Funds for the Central Universities(buctrc202201)High Performance Computing Platform,College of Information Science and Technology,Beijing University of Chemical Technology。
文摘This paper addresses the problem of distributed secure state estimation for multi-agent systems under homologous sensor attacks.Two types of secure Luenberger-like distributed observers are proposed to estimate the system state and attack signal simultaneously.Specifically,the proposed two observers are applicable to deal with the cases in the presence and absence of time delays during network communication.It is also shown that the proposed observers can ensure the attack estimations from different agents asymptotically converge to the same value.Sufficient conditions for guaranteeing the asymptotic convergence of the estimation errors are derived.Simulation examples are finally provided to demonstrate the effectiveness of the proposed results.
文摘The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities.
文摘The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.
基金This work is supported by the Science and Technology Project of State Grid Corporation(No.5455HJ160007).
文摘Online estimation of electromechanical oscillation parameters provides essential information to prevent system instability and blackout and helps to identify event categories and locations.We formulate the problem as a state space model and employ the extended Kalman filter to estimate oscillation frequencies and damping factors directly based on data from phasor measurement units.Due to considerations of communication burdens and privacy concerns,a fully distributed algorithm is proposed using diffusion extended Kalman filter.The effectiveness of proposed algorithms is confirmed by both simulated and real data collected during events in State Grid Jiangsu Electric Power Company.
文摘This paper considers the distributed estimation of a source parameter using quantized sensor observations in a wireless sensor network with noisy channels. Repetition codes are used to transmit quantization bits of sensor observations and a quasi best linear unbiased estimate is constructed to estimate the source parameter. Simulations show that the estimation scheme achieves a better power and spectral efficiency than the previous scheme.
基金Supported by the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList)the Major Program of the National Natural Science Foundation of China (No. 60496311)
文摘This paper describes a distributed estimation scheme (DES) for a bandwidth constrained ad hoc sensor network. The DES is universal in the sense that operations on all sensors are identical and independent of noise distribution. The scheme requires each sensor to transmit just a 1-bit message per observation. Simulation results show that the scheme achieves much better mean-squares error (MSE) performance than the simplified isotropic universal DES and even outperforms the isotropic universal DES which requires more than twice the bandwidth of this scheme.
文摘This paper describes the effect of channel estimation error (CEE) on the performance of distributed estimations of an unknown parameter in a wireless sensor network. Both the classical and Bayesian estimators are derived to mitigate the adverse effects caused by the CEE. Power scheduling among sensors and the power ratio between the training and data transmission at each individual node are optimized by directly minimizing the final average mean squared error to compensate for the CEE. A closed-form power scheduling policy is given for a homogeneous environment, which shows that more than 50% of the power should be allocated to sensor observation transmissions. For an inhomogeneous environment, a multilevel waterfilling type solution is developed for the power scheduling among sensors for only the sum power constraint with a "cave" waterfilling solution for both the sum and individual power constraints. Simulations show that the proposed power scheduling schemes achieve better performance than the equal power scheduling scheme.
基金supported in part by the of National Natural Science Foundation of China(U21A20476,U1911401,U22A20221,62273100,62073090).
文摘This paper introduces several related distributed algorithms,generalised from the celebrated belief propagation algorithm for statistical learning.These algorithms are suitable for a class of computational problems in largescale networked systems,ranging from average consensus,sensor fusion,distributed estimation,distributed optimisation,distributed control,and distributed learning.By expressing the underlying computational problem as a sparse linear system,each algorithm operates at each node of the network graph and computes iteratively the desired solution.The behaviours of these algorithms are discussed in terms of the network graph topology and parameters of the corresponding computational problem.A number of examples are presented to illustrate their applications.Also introduced is a message-passing algorithm for distributed convex optimisation.
文摘This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.
基金This project is supported by National Natural Science Foundation of China(No.50335020,No.50205009)Laboratory of Intelligence Manufacturing Technology of Ministry of Education of China(No.J100301).
文摘Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.
基金partly supported by National Natural Science Foundation of China(Grant Nos.12031016,11971324,11471223)Foundations of Science and Technology Innovation Service Capacity Building,Interdisciplinary Construction of Bioinformatics and Statistics,and Academy for Multidisciplinary Studies,Capital Normal University,Beijing。
文摘In this paper,distributed estimation of high-dimensional sparse precision matrix is proposed based on the debiased D-trace loss penalized lasso and the hard threshold method when samples are distributed into different machines for transelliptical graphical models.At a certain level of sparseness,this method not only achieves the correct selection of non-zero elements of sparse precision matrix,but the error rate can be comparable to the estimator in a non-distributed setting.The numerical results further prove that the proposed distributed method is more effective than the usual average method.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61973277)in part by the Zhejiang Provincial Natural Science Foundation of China(No.LR20F030004)in part by the Major Key Project of PCL(No.PCL2021A09).
文摘The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper.When legitimate user wants to obtain consistent information from multiple sensors,it always employs a fusion center(FC)to gather local data and compute distributed fusion estimates(DFEs).Due to the existence of potential eavesdropper,the data exchanged among sensors,FC and user imperatively require privacy preservation.Hence,we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach.In this case,FC cannot acquire real values of local state estimates,while it only helps calculate encrypted DFEs.Then,the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys,which is based on the homomorphism of encryption.Finally,an illustrative example is provided to verify the effectiveness of the proposed methods.
文摘Proceeded from trimmed Hill estimators and distributed inference, a new distributed version of trimmed Hill estimator for heavy tail index is proposed. Considering the case where the number of observations involved in each machine can be either the same or different and either fixed or varying to the total sample size, its consistency and asymptotic normality are discussed. Simulation studies are particularized to show the new estimator performs almost in line with the trimmed Hill estimator.
基金supported in part by the National Natural Science Foundation of China under Grants 62073070 and U21A2019,and in part by the Alexander von Humboldt Foundation of Germany.
文摘This paper deals with distributed state estimation problem for discrete time-varying systems over binary sensor networks,where every binary sensor is equipped with an energy harvester.The input of every binary sensor considers the randomly occurring missing measurements.The differences between the real and estimated inputs of binary sensor are employed to derive useful information in order to address the insufficient information for estimation purpose.The information from neighboring nodes is transmitted only if its energy level is positive,where a random variable is introduced to formulate the energy level.By means of the available information,distributed estimator is constructed for each binary sensor and the desirable performance constraints is given for the dynamic characteristics of estimation errors within anite time horizon.Sucient conditions are established for the existence of desired distribution estimation quantities through local performance analysis methods.Also,the desired distributed estimator gains are calculated recursively,which means the desirable scalability.Ultimately,the viability and efficiency of the distributed scheme are exhibited through a practical illustration.
基金The National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.
基金National Natural Science Foundation of China (10377015)
文摘A transonic airfoil designed by means of classical point-optimization may result in its dramatically inferior performance under off-design conditions. To overcome this shortcoming, robust design is proposed to find out the optimal profile of an airfoil to maintain its performance in an uncertain environment. The robust airfoil optimization is aimed to minimize mean values and variances of drag coefficients while satisfying the lift and thickness constraints over a range of Mach numbers. A multi-objective estimation of distribution algorithm is applied to the robust airfoil optimization on the base of the RAE2822 benchmark airfoil. The shape of the airfoil is obtained through superposing ten Hick-Henne shape functions upon the benchmark airfoil. A set of design points is selected according to a uniform design table for aerodynamic evaluation. A Kriging model of drag coefficient is constructed with those points to reduce computing costs. Over the Mach range from 0.7 to 0.8, the airfoil generated by the robust optimization has a configuration characterized by supercritical airfoil with low drag coefficients. The small fluctuation in its drag coefficients means that the performance of the robust airfoil is insensitive to variation of Mach number.
文摘The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time.