In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ...In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.展开更多
This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what...This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what its neighbors believe that agent is doing is penalized in the cost function of each agent. At each sampling instant the compatibility constraint of each agent is set tighter than the previous sampling instant. Like the traditional approach, the performance cost is utilized as the Lyapunov function to prove closed-looped stability. The closed-loop stability is guaranteed if the weight matrix for deviation in the cost function are sufficiently large. The proposed distributed control scheme is formulated as quadratic programming with quadratic constraints. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the p...In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed env...A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.展开更多
The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is...The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.展开更多
To solve the coupling relationship between the strip automatic gauge control and the looper control in traditional control strategy of tandem hot rolling,a distributed model predictive control(DMPC)strategy for the ta...To solve the coupling relationship between the strip automatic gauge control and the looper control in traditional control strategy of tandem hot rolling,a distributed model predictive control(DMPC)strategy for the tandem hot rolling was explored,and a series of simulation experiments were carried out.Firstly,based on the state space analysis method,the multivariable dynamic transition process of hot strip rolling was studied,and the state space model of a gauge-looper integrated system in tandem hot rolling was established.Secondly,DMPC strategy based on neighborhood optimization was proposed,which fully considered the coupling relationship in this integrated system.Finally,a series of experiments simulating disturbances and emergency situations were completed with actual rolling data.The experimental results showed that the proposed DMPC control strategy had better performance compared with the traditional proportional-integral control and centralized model predictive control,which is applicable for the gauge-looper integrated system.展开更多
This study aims to solve the problem of multi-missile simultaneous attacks on maneuvering target.The challenges include multimissile cooperative control and target's trajectory prediction.A controller based on non...This study aims to solve the problem of multi-missile simultaneous attacks on maneuvering target.The challenges include multimissile cooperative control and target's trajectory prediction.A controller based on nonlinear distributed model predictive control(NDMPC)is designed for multiple missiles against a maneuvering target,and a trajectory prediction inethod based on particle swarm optimization(PSO)algorithm is proposed.This study has mainly completed the following three aspects of work.Firstly,the cost function of the cont roller is constructed to optimize the accuracy and synchronization of the multi-missile system with consideration of collision avoidance.Secondly,the velocity control of the leading missile is designed by using the range-to-go in-formation in real time to ensure the attack fficiency and the control of the terminal velocity difference.Finally,a kinematic model of the target is cstimated by using short-term real-time data with the PSO algorithm.The established model is employed to predict the target trajectory in the interval between radar scans.Numerical simulation results of two different s enarios demonstrate the effectiveness of the proposed cooperative guidance approach.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consum...Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control(CMPC)strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.展开更多
In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltag...In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.展开更多
Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to c...Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to cyber-attacks with potentially catastrophic consequences.To this end,we present a novel control architecture capable to deal with the distributed constrained regulation problem in the presence of time-delay attacks on the agents’communication infrastructure.The basic idea consists of orchestrating the interconnected cyber-physical system as a leader-follower configuration so that adequate control actions are computed to isolate the attacked unit before it compromises the system operations.Simulations on a multi-area power system confirm that the proposed control scheme can reconfigure the leader-follower structure in response to denial ofservice(DoS)attacks.展开更多
This study investigates the consensus problem of a nonlinear discrete-time multi-agent system(MAS)under bounded additive disturbances.We propose a self-triggered robust distributed model predictive control consensus a...This study investigates the consensus problem of a nonlinear discrete-time multi-agent system(MAS)under bounded additive disturbances.We propose a self-triggered robust distributed model predictive control consensus algorithm.A new cost function is constructed and MAS is coupled through this function.Based on the proposed cost function,a self-triggered mechanism is adopted to reduce the communication load.Furthermore,to overcome additive disturbances,a local minimum-maximum optimization problem under the worst-case scenario is solved iteratively by the model predictive controller of each agent.Sufficient conditions are provided to guarantee the iterative feasibility of the algorithm and the consensus of the closed-loop MAS.For each agent,we provide a concrete form of compatibility constraint and a consensus error terminal region.Numerical examples are provided to illustrate the effectiveness and correctness of the proposed algorithm.展开更多
The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and...The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.展开更多
In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive...In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive control,in the context of the specific challenges faced in the control of chemical process networks.The paper is concluded with some open problems and some possible future research directions in the area.展开更多
We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy fli...We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy flight based pigeon inspired optimization(LFPIO).First,we propose a non-singular fast terminal sliding mode observer(NFTSMO)to estimate the influence of a disturbance,and prove that the observer converges in fixed time using a Lyapunov function.Second,we design an obstacle avoidance strategy based on topology reconstruction,by which the UAV can save energy and safely pass obstacles.Third,we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors.Further,the cost function of each UAV is designed,by which the UAV formation problem is transformed into a game problem.Finally,we develop LFPIO and use it to solve the Nash equilibrium.Numerical simulations are conducted,and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.展开更多
Considering that the inevitable disturbances and coupled constraints pose an ongoing challenge to distributed control algorithms,this paper proposes a distributed robust model predictive control(MPC)algorithm for a mu...Considering that the inevitable disturbances and coupled constraints pose an ongoing challenge to distributed control algorithms,this paper proposes a distributed robust model predictive control(MPC)algorithm for a multi-agent system with additive external disturbances and obstacle and collision avoidance constraints.In particular,all the agents are allowed to solve optimization problems simultaneously at each time step to obtain their control inputs,and the obstacle and collision avoidance are accomplished in the context of full-dimensional controlled objects and obstacles.To achieve the collision avoidance between agents in the distributed framework,an assumed state trajectory is introduced for each agent which is transmitted to its neighbors to construct the polyhedral over-approximations of it.Then the polyhedral over-approximations of the agent and the obstacles are used to smoothly reformulate the original nonconvex obstacle and collision avoidance constraints.And a compatibility constraint is designed to restrict the deviation between the predicted and assumed trajectories.Moreover,recursive feasibility of each local MPC optimization problem with all these constraints derived and input-to-state stability of the closed-loop system can be ensured through a sufficient condition on controller parameters.Finally,simulations with four agents and two obstacles demonstrate the efficiency of the proposed algorithm.展开更多
文摘In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(No.60874046,60974090)the Ph.D.Programs Foundation of the Ministry of Education of China(No.200806110021)the Natural Science Foundation of Chongqing of China(CSTS No.2008BB2049)
文摘This paper addresses an improved distributed model predictive control (DMPC) scheme for multiagent systems with an attempt to improving its consistency. The deviation between what an agent is actually doing and what its neighbors believe that agent is doing is penalized in the cost function of each agent. At each sampling instant the compatibility constraint of each agent is set tighter than the previous sampling instant. Like the traditional approach, the performance cost is utilized as the Lyapunov function to prove closed-looped stability. The closed-loop stability is guaranteed if the weight matrix for deviation in the cost function are sufficiently large. The proposed distributed control scheme is formulated as quadratic programming with quadratic constraints. A numerical example is given to illustrate the effectiveness of the proposed scheme.
基金the National Natural Science Foundation of China(61563032,61963025)The Open Foundation of the Key Laboratory of Gansu Advanced Control for Industrial Processes(2019KX01)The Project of Industrial support and guidance of Colleges and Universities in Gansu Province(2019C05).
文摘In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金National Natural Science Foundation of China(Nos.62173303 and 62273307)Natural Science Foundation of Zhejiang Province(No.LQ24F030023)。
文摘A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.
基金supported in part by the National Natural Science Foundation of China(No.61803009)Fundamental Research Funds for the Central Universities,China(No.YWF-19-BJ-J-205)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.
基金This work was supported by the National Key R&D Program of China(Grant Nos.2018YFB1308700)the National Natural Science Foundation of China(Grant Nos.U21A20117 and 52074085+1 种基金the Fundamental Research Funds for the Central Univer-sities(Grant No.N2004010)the Liaoning Revitalization Talents651 Program(XLYC1907065).
文摘To solve the coupling relationship between the strip automatic gauge control and the looper control in traditional control strategy of tandem hot rolling,a distributed model predictive control(DMPC)strategy for the tandem hot rolling was explored,and a series of simulation experiments were carried out.Firstly,based on the state space analysis method,the multivariable dynamic transition process of hot strip rolling was studied,and the state space model of a gauge-looper integrated system in tandem hot rolling was established.Secondly,DMPC strategy based on neighborhood optimization was proposed,which fully considered the coupling relationship in this integrated system.Finally,a series of experiments simulating disturbances and emergency situations were completed with actual rolling data.The experimental results showed that the proposed DMPC control strategy had better performance compared with the traditional proportional-integral control and centralized model predictive control,which is applicable for the gauge-looper integrated system.
文摘This study aims to solve the problem of multi-missile simultaneous attacks on maneuvering target.The challenges include multimissile cooperative control and target's trajectory prediction.A controller based on nonlinear distributed model predictive control(NDMPC)is designed for multiple missiles against a maneuvering target,and a trajectory prediction inethod based on particle swarm optimization(PSO)algorithm is proposed.This study has mainly completed the following three aspects of work.Firstly,the cost function of the cont roller is constructed to optimize the accuracy and synchronization of the multi-missile system with consideration of collision avoidance.Secondly,the velocity control of the leading missile is designed by using the range-to-go in-formation in real time to ensure the attack fficiency and the control of the terminal velocity difference.Finally,a kinematic model of the target is cstimated by using short-term real-time data with the PSO algorithm.The established model is employed to predict the target trajectory in the interval between radar scans.Numerical simulation results of two different s enarios demonstrate the effectiveness of the proposed cooperative guidance approach.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
文摘Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control(CMPC)strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.
基金supported by the National Key R&D Program of China (2018AAA0101701)the National Natural Science Foundation of China (62073220,61833012)。
文摘In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.
文摘Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to cyber-attacks with potentially catastrophic consequences.To this end,we present a novel control architecture capable to deal with the distributed constrained regulation problem in the presence of time-delay attacks on the agents’communication infrastructure.The basic idea consists of orchestrating the interconnected cyber-physical system as a leader-follower configuration so that adequate control actions are computed to isolate the attacked unit before it compromises the system operations.Simulations on a multi-area power system confirm that the proposed control scheme can reconfigure the leader-follower structure in response to denial ofservice(DoS)attacks.
基金Project supported by the National Natural Science Foundation of China(Nos.61973074,U1713209,61520106009,61533008,and 61921004)the National Key R&D Program of China(No.2018AAA0101400)the Science and Technology on Information System Engineering Laboratory,China(No.05201902)。
文摘This study investigates the consensus problem of a nonlinear discrete-time multi-agent system(MAS)under bounded additive disturbances.We propose a self-triggered robust distributed model predictive control consensus algorithm.A new cost function is constructed and MAS is coupled through this function.Based on the proposed cost function,a self-triggered mechanism is adopted to reduce the communication load.Furthermore,to overcome additive disturbances,a local minimum-maximum optimization problem under the worst-case scenario is solved iteratively by the model predictive controller of each agent.Sufficient conditions are provided to guarantee the iterative feasibility of the algorithm and the consensus of the closed-loop MAS.For each agent,we provide a concrete form of compatibility constraint and a consensus error terminal region.Numerical examples are provided to illustrate the effectiveness and correctness of the proposed algorithm.
基金co-supported by the National Natural Science Foundation of China(Nos.61803009,61903084)Fundamental Research Funds for the Central Universities of China(No.YWF-20-BJ-J-542)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.
基金supported by Australian Research Council(ARC)Discovery Project(No.DP130103330)
文摘In this paper,we present a review of the current literature on distributed(or partially decentralized) control of chemical process networks.In particular,we focus on recent developments in distributed model predictive control,in the context of the specific challenges faced in the control of chemical process networks.The paper is concluded with some open problems and some possible future research directions in the area.
基金Project supported by the Science and Technology Innovation 2030 Key Project of“New Generation Artificial Intelligence,”China(No.2018AAA0100803)the National Natural Science Foundation of China(Nos.T2121003,U1913602,U20B2071,91948204,and U19B2033)。
文摘We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy flight based pigeon inspired optimization(LFPIO).First,we propose a non-singular fast terminal sliding mode observer(NFTSMO)to estimate the influence of a disturbance,and prove that the observer converges in fixed time using a Lyapunov function.Second,we design an obstacle avoidance strategy based on topology reconstruction,by which the UAV can save energy and safely pass obstacles.Third,we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors.Further,the cost function of each UAV is designed,by which the UAV formation problem is transformed into a game problem.Finally,we develop LFPIO and use it to solve the Nash equilibrium.Numerical simulations are conducted,and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.
基金the National Natural Science Foundation of China(Nos.62173036,62003040,62122014)the Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Considering that the inevitable disturbances and coupled constraints pose an ongoing challenge to distributed control algorithms,this paper proposes a distributed robust model predictive control(MPC)algorithm for a multi-agent system with additive external disturbances and obstacle and collision avoidance constraints.In particular,all the agents are allowed to solve optimization problems simultaneously at each time step to obtain their control inputs,and the obstacle and collision avoidance are accomplished in the context of full-dimensional controlled objects and obstacles.To achieve the collision avoidance between agents in the distributed framework,an assumed state trajectory is introduced for each agent which is transmitted to its neighbors to construct the polyhedral over-approximations of it.Then the polyhedral over-approximations of the agent and the obstacles are used to smoothly reformulate the original nonconvex obstacle and collision avoidance constraints.And a compatibility constraint is designed to restrict the deviation between the predicted and assumed trajectories.Moreover,recursive feasibility of each local MPC optimization problem with all these constraints derived and input-to-state stability of the closed-loop system can be ensured through a sufficient condition on controller parameters.Finally,simulations with four agents and two obstacles demonstrate the efficiency of the proposed algorithm.