A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on...At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.展开更多
An all optical fiber gas sensor is presented to detect the concentration of NH3 and CO. Based on the spectral absorption, The wideband light source is used to reflect two narrowband spectra by fiber grating of differe...An all optical fiber gas sensor is presented to detect the concentration of NH3 and CO. Based on the spectral absorption, The wideband light source is used to reflect two narrowband spectra by fiber grating of different duty. and piezoelectric ceramics to obtain narrowband output light. The high sensitivity detection can be measured from the second harmonic signal. The two narrowband spectra are corresponding to the absorption spectra of NH3 and CO. Concentration detection are realized by the detection of variety of light intensity. Sensitivity is proved and cost is reduced.展开更多
Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)tech...Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)techniques.Its availability can greatly help towards the industrialization of the corresponding Structural health monitoring(SHM)system.But having in mind that for SHM systems the sensors are at fixed positions,and the location of a potential damage would change its detectability.Consequently robust simulation tools are required to obtain the model assisted probability of detection(MAPOD)which is needed to validate the SHM system.This tool may also help for the optimization of the sensor distribution,and finally will allow a probabilistic risk management.INDEUS,simulation of ultrasonic waves SHM system,was a main milestone in this direction.This article deals with the simulation tools for a strain based SHM system,using fiber optic sensors(FOS).FOS are essentially strain/temperature sensors,either with multi-point or with distributed sensing.The simulation tool includes the finite element model(FEM)for the original and damaged structure,and algorithms to compare the strain data at the pre-established sensors locations,and from this comparison to extract information about damage occurrence and location.The study has been applied to the structure of an all-composite unmanned aircraft vehicle(UAV)now under construction,designed at Universidad Politecnica de Madrid for the inspection of electrical utilities networks.Distributed sensing optical fibers were internally bonded at the fuselage and wing.Routine inspection is planned to be done with the aircraft at the test bench by imposing known loads.From the acquired strain data,damage occurrence may be calculated as slight deviations from the baselines.This is a fast inspection procedure without requiring trained specialists,and it would allow for detection of hidden damages.Simulation indicates that stringer partial debondings are detected before they become critical,while small delaminations as those produced by barely visible impact damages would require a prohibited number of sensing lines.These simulation tools may easily be applied to any other complex structure,just by changing the FEM models.From these results it is shown how a fiber optic based SHM system may be used as a reliable damage detection procedure.展开更多
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Ф-OTDR) technology also brings in high nuisance alarm rates (NARs...High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Ф-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.展开更多
A new distributed optical fiber sensor system for long-distance oil pipeline leakage and external damage detection is presented. A smart and sensitive optical fiber cable is buried beneath the soil running along the o...A new distributed optical fiber sensor system for long-distance oil pipeline leakage and external damage detection is presented. A smart and sensitive optical fiber cable is buried beneath the soil running along the oil pipeline, which is sensitive to soakage of oil products and mechanical deformation and vibration caused by leaking, tampering, and mechanical impacting. The region of additional attenuation can be located based on the optical time domain reflectometry (OTDR), and the types of external disturbances can be identified according to the characteristics of transmitted optical power. The Golay codes are utilized to improve the range-resolution performance of the OTDR sub-system and offer a method to characterize the transmitted optical power in a wide range of frequency spectrum. Theoretic analysis and simulation experiment have shown that the application of Golay codes can overcome the shortcomings of the prototype based on the conventional single-pulse OTDR.展开更多
Optical fiber vibration is detected by the coherent optical time domain reflection technique. In addition to the vibration signals, the reflected signals include clutters and noises, which lead to a high false alarm r...Optical fiber vibration is detected by the coherent optical time domain reflection technique. In addition to the vibration signals, the reflected signals include clutters and noises, which lead to a high false alarm rate. The "cell averaging" constant false alarm rate algorithm has a high computing speed, but its detection performance will be declined in nonhomogeneous environments such as multiple targets. The "order statistics" constant false alarm rate algorithm has a distinct advantage in multiple target environments, but it has a lower computing speed. An intelligent two-level detection algorithm is presented based on "cell averaging" constant false alarm rate and "order statistics" constant false alarm rate which work in serial way, and the detection speed of "cell averaging" constant false alarm rate and performance of "order statistics" constant false alarm rate are conserved, respectively. Through the adaptive selection, the "cell averaging" is applied in homogeneous environments, and the two-level detection algorithm is employed in nonhomogeneous environments. Our Monte Carlo simulation results demonstrate that considering different signal noise ratios, the proposed algorithm gives better detection probability than that of "order statistics".展开更多
Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal t...Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.展开更多
To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed...To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed based on the ordinary communication optical fiber. The sensing theories were analyzed, and the experimental studies were also carried out. The quasi-distributed sensing system based on optical time domain reflective technology was established. The detection wavelength and spatial resolution were analyzed, and the estimation formula of maximal number of sensing point was also given. The results show that the system can realize the quasi-distributed test of measurand with single fiber, which helps to simplify the in-out wires. Moreover it can take on the important task of long-term and continuous monitoring of prestress, which helps to realize the life cycle detection of prestress, and play an important role in the estimating of bridge health state.展开更多
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
文摘At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.
文摘An all optical fiber gas sensor is presented to detect the concentration of NH3 and CO. Based on the spectral absorption, The wideband light source is used to reflect two narrowband spectra by fiber grating of different duty. and piezoelectric ceramics to obtain narrowband output light. The high sensitivity detection can be measured from the second harmonic signal. The two narrowband spectra are corresponding to the absorption spectra of NH3 and CO. Concentration detection are realized by the detection of variety of light intensity. Sensitivity is proved and cost is reduced.
基金supported by the project TRA2014-58263-C2-2-Rfunded by the National Research program of Spain
文摘Probability of detection(POD)graphics allow for a change from qualitative to quantitative assessment for every damage detection system,and as such it is a main request for conventional non-destructive testing(NDT)techniques.Its availability can greatly help towards the industrialization of the corresponding Structural health monitoring(SHM)system.But having in mind that for SHM systems the sensors are at fixed positions,and the location of a potential damage would change its detectability.Consequently robust simulation tools are required to obtain the model assisted probability of detection(MAPOD)which is needed to validate the SHM system.This tool may also help for the optimization of the sensor distribution,and finally will allow a probabilistic risk management.INDEUS,simulation of ultrasonic waves SHM system,was a main milestone in this direction.This article deals with the simulation tools for a strain based SHM system,using fiber optic sensors(FOS).FOS are essentially strain/temperature sensors,either with multi-point or with distributed sensing.The simulation tool includes the finite element model(FEM)for the original and damaged structure,and algorithms to compare the strain data at the pre-established sensors locations,and from this comparison to extract information about damage occurrence and location.The study has been applied to the structure of an all-composite unmanned aircraft vehicle(UAV)now under construction,designed at Universidad Politecnica de Madrid for the inspection of electrical utilities networks.Distributed sensing optical fibers were internally bonded at the fuselage and wing.Routine inspection is planned to be done with the aircraft at the test bench by imposing known loads.From the acquired strain data,damage occurrence may be calculated as slight deviations from the baselines.This is a fast inspection procedure without requiring trained specialists,and it would allow for detection of hidden damages.Simulation indicates that stringer partial debondings are detected before they become critical,while small delaminations as those produced by barely visible impact damages would require a prohibited number of sensing lines.These simulation tools may easily be applied to any other complex structure,just by changing the FEM models.From these results it is shown how a fiber optic based SHM system may be used as a reliable damage detection procedure.
基金The authors gratefully acknowledge the supports provided for this research by Youth Foundation (Grant No. 61301275), Major Instrument Special Program (Grant No. 41527805), the Major Program (Grant No. 61290312) of the National Science Foundation of China (NSFC), and the fund of State Grid Corporation of China: Research on distributed multi-parameter sensing and measurement control technology for electric power optical fiber communication networks (Grant No. 5455HT160014). This work is also supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1218) and the 111 Project (B14039).
文摘High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Ф-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
基金This work was supported by the R&D Foundation of China National Petroleum Corporation (CNPC) (No.2001411-4)by the Natural Science Foundation of Henan Province (No. 0511052700).
文摘A new distributed optical fiber sensor system for long-distance oil pipeline leakage and external damage detection is presented. A smart and sensitive optical fiber cable is buried beneath the soil running along the oil pipeline, which is sensitive to soakage of oil products and mechanical deformation and vibration caused by leaking, tampering, and mechanical impacting. The region of additional attenuation can be located based on the optical time domain reflectometry (OTDR), and the types of external disturbances can be identified according to the characteristics of transmitted optical power. The Golay codes are utilized to improve the range-resolution performance of the OTDR sub-system and offer a method to characterize the transmitted optical power in a wide range of frequency spectrum. Theoretic analysis and simulation experiment have shown that the application of Golay codes can overcome the shortcomings of the prototype based on the conventional single-pulse OTDR.
文摘Optical fiber vibration is detected by the coherent optical time domain reflection technique. In addition to the vibration signals, the reflected signals include clutters and noises, which lead to a high false alarm rate. The "cell averaging" constant false alarm rate algorithm has a high computing speed, but its detection performance will be declined in nonhomogeneous environments such as multiple targets. The "order statistics" constant false alarm rate algorithm has a distinct advantage in multiple target environments, but it has a lower computing speed. An intelligent two-level detection algorithm is presented based on "cell averaging" constant false alarm rate and "order statistics" constant false alarm rate which work in serial way, and the detection speed of "cell averaging" constant false alarm rate and performance of "order statistics" constant false alarm rate are conserved, respectively. Through the adaptive selection, the "cell averaging" is applied in homogeneous environments, and the two-level detection algorithm is employed in nonhomogeneous environments. Our Monte Carlo simulation results demonstrate that considering different signal noise ratios, the proposed algorithm gives better detection probability than that of "order statistics".
基金Supported by the National Natural Science Foundation of China (50375026,50375028)
文摘Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.
文摘To monitor the stress state of prestressed reinforcement in large reinforcement prestressed structure, two sensing structures, namely the direct spiral-winding structure and sawtooth modulated structure, were designed based on the ordinary communication optical fiber. The sensing theories were analyzed, and the experimental studies were also carried out. The quasi-distributed sensing system based on optical time domain reflective technology was established. The detection wavelength and spatial resolution were analyzed, and the estimation formula of maximal number of sensing point was also given. The results show that the system can realize the quasi-distributed test of measurand with single fiber, which helps to simplify the in-out wires. Moreover it can take on the important task of long-term and continuous monitoring of prestress, which helps to realize the life cycle detection of prestress, and play an important role in the estimating of bridge health state.