With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen...With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.展开更多
As the share of photovoltaic power generation in power system has increased year by year, the optimization choice of access system schemes become one of the first and most important problems in grid before admitting p...As the share of photovoltaic power generation in power system has increased year by year, the optimization choice of access system schemes become one of the first and most important problems in grid before admitting photovoltaic power generation. Therefore, this article takes a proposed distributed photovoltaic as an example to research and analyze two kinds of high density multiple access points distributed photovoltaic access system schemes. The emphasis is making a comprehensive comparison and selection among the aspect of active power loss and economic benefit, etc. In the premise of ensuring the normal power generation of the photovoltaic system, it puts forward the recommended scheme that can help to spontaneous self-consumption, elimination on the spot, effectively decrease network loss and economic benefit.展开更多
Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smar...Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.展开更多
文摘With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.
文摘As the share of photovoltaic power generation in power system has increased year by year, the optimization choice of access system schemes become one of the first and most important problems in grid before admitting photovoltaic power generation. Therefore, this article takes a proposed distributed photovoltaic as an example to research and analyze two kinds of high density multiple access points distributed photovoltaic access system schemes. The emphasis is making a comprehensive comparison and selection among the aspect of active power loss and economic benefit, etc. In the premise of ensuring the normal power generation of the photovoltaic system, it puts forward the recommended scheme that can help to spontaneous self-consumption, elimination on the spot, effectively decrease network loss and economic benefit.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA27000000)。
文摘Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.