Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t...Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.展开更多
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subje...We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subject to delay constraint on the aggregating path. We show that this problem is NP-hard and propose approximation algorithm proving the approximation ratio with lnm+1, where is the number of monitoring nodes. At last we extend our modal with more constraint of bounded delay variation. Key words network - distributed monitoring - delay constraint - NP-hard CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: LIU Xiang-hui(1973-), male, Ph. D. candidate, research direction: algorithm complexity analysis, QoS in Internet.展开更多
Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring system...Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.展开更多
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p...The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.展开更多
With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and com...With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and communication burden.Existing resource monitoring systems are widely deployed in cloud data centers,but it is difficult for traditional resource monitoring solutions to handle the massive data generated by thousands of edge devices.To address these challenges,we propose a super resolution sensing(SRS)method for distributed resource monitoring,which can be used to recover reliable and accurate high‑frequency data from low‑frequency sampled resource monitoring data.Experiments based on the proposed SRS model are also conducted and the experimental results show that it can effectively reduce the errors generated when recovering low‑frequency monitoring data to high‑frequency data,and verify the effectiveness and practical value of applying SRS method for resource monitoring on edge clouds.展开更多
This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor tec...This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.展开更多
A wireless distributed monitoring terminal was designed with embedded Linux used on the basis of ARM board, and an application program was developed for data collection, processing and transmission. Data were collecte...A wireless distributed monitoring terminal was designed with embedded Linux used on the basis of ARM board, and an application program was developed for data collection, processing and transmission. Data were collected from the surrounding environment and transmitted to a server via WLAN in the form of Extensible Markup Language (XML) stream, so the terminal had good flexibility to be compatible with different sensors, network devices and information systems from multiple manufacturers.展开更多
Distributed computing is a field of computer science that studies distributed systems. With the increasing computing capacity of computers it is widely used to solve large problems. Monitoring system is one of the key...Distributed computing is a field of computer science that studies distributed systems. With the increasing computing capacity of computers it is widely used to solve large problems. Monitoring system is one of the key components in distributed computing. Although there have been varieties of monitoring systems developed by different organizations, it is still a great challenge to monitor a heterogeneous distributed environment in a unified and transparent way. In this paper, we present a unified monitoring framework for distributed environment (UMFDE) with heterogeneous monitoring systems, and then propose a comprehensive method based on the Enterprise Service Bus (ESB) to integrate the monitoring systems in the environment as a unified monitoring system. A representative case study is given to show the feasibility of this framework.展开更多
The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme ...The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme of the ship integrated monitoring and operating system based on two layers distributed and redundant computer network. The lower layer network is the field bus network connected mainly by CAN bus; the upper one is the PC local network in TCP/IP protocol, which consisted of a database server, monitoring and operating computers, industrial computers and a set of switches. Distributed schemes are fully applied to both software and hardware. This paper specifically describes the composition, software distribution and redundant technology of the upper local network and gives some important sample codes for the implement of the redundant and distributed design. The technologies here have been proved in the many applications and it may be applied to other industrial fields.展开更多
Based on the discussion of bluetooth and network technology, this paper proposed an entire framework of a wireless distributed monitoring system by combining the characteristics of industry application. The feasibilit...Based on the discussion of bluetooth and network technology, this paper proposed an entire framework of a wireless distributed monitoring system by combining the characteristics of industry application. The feasibility of putting this kind of system in practice is discussed. The wireless distributed monitoring system can enhance the performance of condition monitoring more than the traditional one used now.展开更多
A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can...A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.展开更多
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa...Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.展开更多
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ...Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.展开更多
The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventi...The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventional monitoring method (According to ISIR (Institute of Standards and Industrial Research of Iran), 1053 and 4208) and use of electronic system method (Patent in industrial property general office of Iran, 77815). Free chlorine monitoring and pH test done by health workers in the conventional method and the results will be sent to the Health Network monthly. Sampling for microbiological testing is done monthly based on population (According to ISIR, 4208). On the electronic system, the procedure is also done by health workers, but the result will be sent to the receiver device by using a cell phone. According to the chlorine test results if the free chlorine residual reported zero, microbiological sampling was done by a health expert. Finally, the number of chlorine test and microbiological sampling and the results of these experiments collected in the both methods and recorded in SPSS 22 then were analyzed by using chi-square test and Fisher exact test. The result of microbiological experiments shows that the sampling rate decreased 29% in using of electronic system method in comparison to the conventional monitoring method while the number of microbial defect detection increased 19% in drinking water networks monitoring by electronic system. Using of electronic system monitoring can reduce the rate and cost of microbiological sampling and its experiments and increase accuracy of these tests, in this way it will increase the quality and safety of drinking water in distribution network in small and dispersed rural communities.展开更多
The transmission loss of photons during quantum key distribution(QKD)process leads to the linear key rate bound for practical QKD systems without quantum repeaters.Phase matching quantum key distribution(PM-QKD)protoc...The transmission loss of photons during quantum key distribution(QKD)process leads to the linear key rate bound for practical QKD systems without quantum repeaters.Phase matching quantum key distribution(PM-QKD)protocol,an novel QKD protocol,can overcome the constraint with a measurement-device-independent structure,while it still requires the light source to be ideal.This assumption is not guaranteed in practice,leading to practical secure issues.In this paper,we propose a modified PM-QKD protocol with a light source monitoring,named PM-QKD-LSM protocol,which can guarantee the security of the system under the non-ideal source condition.The results show that our proposed protocol performs almost the same as the ideal PM-QKD protocol even considering the imperfect factors in practical systems.PMQKD-LSM protocol has a better performance with source fluctuation,and it is robust in symmetric or asymmetric cases.展开更多
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number 223202.
文摘Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
文摘We address the problem of optimizing a distributed monitoring system and the goal of the optimization is to reduce the cost of deployment of the monitoring infrastructure by identifying a minimum aggregating set subject to delay constraint on the aggregating path. We show that this problem is NP-hard and propose approximation algorithm proving the approximation ratio with lnm+1, where is the number of monitoring nodes. At last we extend our modal with more constraint of bounded delay variation. Key words network - distributed monitoring - delay constraint - NP-hard CLC number TP 393 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: LIU Xiang-hui(1973-), male, Ph. D. candidate, research direction: algorithm complexity analysis, QoS in Internet.
基金This project is supported by National Natural Science Foundation of China(No.50335020,No.50205009)Laboratory of Intelligence Manufacturing Technology of Ministry of Education of China(No.J100301).
文摘Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.
基金jointly supported by the Science and Technology Program of Guangzhou (202103040003)the offshore NGHs production test projects under the Marine Geological Survey Program initiated by the China Geological Survey (DD20190226, DD20190218 and DD20221706)+2 种基金the Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020] 045)the financial support from China Geological Survey (DD20221703)the National Natural Science Foundation of China (NSFC) (6210030553)。
文摘The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.
文摘With the vigorous development of mobile networks,the number of devices at the network edge is growing rapidly and the massive amount of data generated by the devices brings a huge challenge of response latency and communication burden.Existing resource monitoring systems are widely deployed in cloud data centers,but it is difficult for traditional resource monitoring solutions to handle the massive data generated by thousands of edge devices.To address these challenges,we propose a super resolution sensing(SRS)method for distributed resource monitoring,which can be used to recover reliable and accurate high‑frequency data from low‑frequency sampled resource monitoring data.Experiments based on the proposed SRS model are also conducted and the experimental results show that it can effectively reduce the errors generated when recovering low‑frequency monitoring data to high‑frequency data,and verify the effectiveness and practical value of applying SRS method for resource monitoring on edge clouds.
文摘This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.
文摘A wireless distributed monitoring terminal was designed with embedded Linux used on the basis of ARM board, and an application program was developed for data collection, processing and transmission. Data were collected from the surrounding environment and transmitted to a server via WLAN in the form of Extensible Markup Language (XML) stream, so the terminal had good flexibility to be compatible with different sensors, network devices and information systems from multiple manufacturers.
文摘Distributed computing is a field of computer science that studies distributed systems. With the increasing computing capacity of computers it is widely used to solve large problems. Monitoring system is one of the key components in distributed computing. Although there have been varieties of monitoring systems developed by different organizations, it is still a great challenge to monitor a heterogeneous distributed environment in a unified and transparent way. In this paper, we present a unified monitoring framework for distributed environment (UMFDE) with heterogeneous monitoring systems, and then propose a comprehensive method based on the Enterprise Service Bus (ESB) to integrate the monitoring systems in the environment as a unified monitoring system. A representative case study is given to show the feasibility of this framework.
基金the Special Doctorial Point Fund of National Education Department of China(1999015103),the Doctor Foundation of Liaoning (001057)and the Outstanding Youth Fund of Dalian City(2001122).
文摘The world trend in ship automation is to integrate the monitoring, intelligent control and systematic management of the instruments and equipments both on bridge and in engine room. The paper presents a design scheme of the ship integrated monitoring and operating system based on two layers distributed and redundant computer network. The lower layer network is the field bus network connected mainly by CAN bus; the upper one is the PC local network in TCP/IP protocol, which consisted of a database server, monitoring and operating computers, industrial computers and a set of switches. Distributed schemes are fully applied to both software and hardware. This paper specifically describes the composition, software distribution and redundant technology of the upper local network and gives some important sample codes for the implement of the redundant and distributed design. The technologies here have been proved in the many applications and it may be applied to other industrial fields.
文摘Based on the discussion of bluetooth and network technology, this paper proposed an entire framework of a wireless distributed monitoring system by combining the characteristics of industry application. The feasibility of putting this kind of system in practice is discussed. The wireless distributed monitoring system can enhance the performance of condition monitoring more than the traditional one used now.
基金supported by the National Natural Science Foundation of China under Grant No. 60377021partially supported by Program for New Century Excellent Talents in University under Grant. No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.
基金support provided by the National Natural Science Foundation of China(Grant Nos.42225702,and 42077232)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022).
文摘Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.
基金The authors grate fully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao),China(Grant No.SKUoTSC(UM)-2021-2023/0RP/GA10/2022).
文摘Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.
文摘The used water for human consumption must be free of microorganisms and chemicals that cause risk in the human health. In this study, water quality of 18 rural area of Abarkouh was determined and compared the conventional monitoring method (According to ISIR (Institute of Standards and Industrial Research of Iran), 1053 and 4208) and use of electronic system method (Patent in industrial property general office of Iran, 77815). Free chlorine monitoring and pH test done by health workers in the conventional method and the results will be sent to the Health Network monthly. Sampling for microbiological testing is done monthly based on population (According to ISIR, 4208). On the electronic system, the procedure is also done by health workers, but the result will be sent to the receiver device by using a cell phone. According to the chlorine test results if the free chlorine residual reported zero, microbiological sampling was done by a health expert. Finally, the number of chlorine test and microbiological sampling and the results of these experiments collected in the both methods and recorded in SPSS 22 then were analyzed by using chi-square test and Fisher exact test. The result of microbiological experiments shows that the sampling rate decreased 29% in using of electronic system method in comparison to the conventional monitoring method while the number of microbial defect detection increased 19% in drinking water networks monitoring by electronic system. Using of electronic system monitoring can reduce the rate and cost of microbiological sampling and its experiments and increase accuracy of these tests, in this way it will increase the quality and safety of drinking water in distribution network in small and dispersed rural communities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(Grant No.KF201909)。
文摘The transmission loss of photons during quantum key distribution(QKD)process leads to the linear key rate bound for practical QKD systems without quantum repeaters.Phase matching quantum key distribution(PM-QKD)protocol,an novel QKD protocol,can overcome the constraint with a measurement-device-independent structure,while it still requires the light source to be ideal.This assumption is not guaranteed in practice,leading to practical secure issues.In this paper,we propose a modified PM-QKD protocol with a light source monitoring,named PM-QKD-LSM protocol,which can guarantee the security of the system under the non-ideal source condition.The results show that our proposed protocol performs almost the same as the ideal PM-QKD protocol even considering the imperfect factors in practical systems.PMQKD-LSM protocol has a better performance with source fluctuation,and it is robust in symmetric or asymmetric cases.