Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the f...Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met...An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.展开更多
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a...The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a design scheme for a fast charging station for electric vehicles equipped with distributed photovoltaic power generation system taking the area with certain conditions in Beijing as an example construction site. The technical indexes and equipment lectotype covering the general framework and subsystems of the charging station are determined by analyzing the charging service demand of fast charging stations. In this study, the layout of the station is developed and the operation benefits of the station is analyzed. The design scheme realizes the design objective of "rationalization, modularization and intelligentization" of the fast charging station and can be used as reference for the construction of a fast charging network in urban area.展开更多
With the development of the dense array,the surface wave velocity and azimuthal anisotropy under the array can be directly obtained by beamforming the noise cross-correlation functions(NCFs). However, the retrieval of...With the development of the dense array,the surface wave velocity and azimuthal anisotropy under the array can be directly obtained by beamforming the noise cross-correlation functions(NCFs). However, the retrieval of the Green’s function by cross-correlating the seismic noise requires that the noise source has a uniform distribution. For the case with uneven noise source, the azimuthal dependence on the sources in the expression for the spatial coherence function, which corresponds to the NCF in the time domain,has the same form as the azimuthal dependence of the surface wave velocity in weakly anisotropic media. Therefore, the uneven noise source will affect the surface wave anisotropy extraction. In this study, three passive seismic methods, i.e.,beamforming, SPAC(spatial autocorrelation), and NCF, are compared to demonstrate that an uneven source distribution and uneven station distribution have equivalent effects on the outcome from each method. A beamforming method is proposed to directly extract the velocity and azimuthal anisotropy of surface waves. The effect of uneven noise source and/or station distribution on estimating the azimuth anisotropy of surface waves was investigated using data from the ChinArray Phase Ⅱ. A method for correcting the apparent anisotropy in beamforming results caused by an uneven station distribution is suggested.展开更多
Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision usi...Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.展开更多
To investigate highway petrol station replenishment in initiative distribution mode,this paper develops a mixed-integer linear programming(MILP)model with minimal operational costs that includes loading costs,unloadin...To investigate highway petrol station replenishment in initiative distribution mode,this paper develops a mixed-integer linear programming(MILP)model with minimal operational costs that includes loading costs,unloading costs,transport costs and the costs caused by unpunctual distribution.Based on discrete representation,the working day is divided into equal time intervals,and the truck distribution process is decomposed into a pair of tasks including driving,standby,rest,loading and unloading.Each truck must execute one task during a single interval,and the currently executing task is closely related to the preceding and subsequent tasks.By accounting for predictive time-varying sales at petrol stations,real-time road congestion and a series of operational constraints,the proposed model produces the optimal truck dispatch,namely,a detailed task assignment for all trucks during each time interval.The model is tested on a real-world case of a replenishment system comprising eight highway petrol stations,one depot,one garage and eight trucks to demonstrate its applicability and accuracy.展开更多
为有效缓解资阳市第二污水处理厂现状处理能力不足导致的污水溢流问题,改善周边水生态环境,新建了规模为5000 m 3/d的应急污水处理工程。该工程采用“多级A/O+磁混凝沉淀”组合工艺,对其中的多级A/O工艺段进行了深化设计,并对本项目的...为有效缓解资阳市第二污水处理厂现状处理能力不足导致的污水溢流问题,改善周边水生态环境,新建了规模为5000 m 3/d的应急污水处理工程。该工程采用“多级A/O+磁混凝沉淀”组合工艺,对其中的多级A/O工艺段进行了深化设计,并对本项目的实际运行效果进行了分析。深化设计结果表明,多级A/O反应器级数宜采用2级,流量分配比宜为7∶3,污泥回流比宜为100%。运行期间的监测数据表明,出水指标均满足《四川省岷江、沱江流域水污染物排放标准》(DB51/2311-2016),其中的COD Cr、TP和TN的去除率分别为96.6%、97.6%和87.2%。通过设置初段硝化液回流,充分发挥初级缺氧池的脱氮能力,使多级A/O工艺的脱氮效率得到了强化。该项目采用的组合工艺简单有效,出水效果好,为城市溢流污水的高标准排放提供了一种更优选择。展开更多
A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communic...A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.展开更多
The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to...The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.展开更多
This paper deals with a type of servicing machines model, which service station has a life time of the kth Er-langian distribution and can be repaired just like a new one. The cyclic time and the inefficiency quantiti...This paper deals with a type of servicing machines model, which service station has a life time of the kth Er-langian distribution and can be repaired just like a new one. The cyclic time and the inefficiency quantities of this system in equilibrium are obtained.展开更多
Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the pos...Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the possible power generated.Maximum power point tracking is needed in order to make sure that,at any time,the maximum power will be extracted from the photovoltaic system.However,maximum power point tracking is not a suitable solution for mismatches and partial shading conditions.To overcome the drawbacks of maximum power point tracking due to mismatches and shadows,distributed maximum power point tracking is util-ized in this paper.The solar farm can be distributed in different ways,including one DC-DC converter per group of modules or per module.In this paper,distributed maximum power point tracking per module is implemented,which has the highest efficiency.This technology is applied to electric vehicles(EVs)that can be charged with a Level 3 charging station in<1 hour.However,the problem is that charging an EV in<1 hour puts a lot of stress on the power grid,and there is not always enough peak power reserve in the existing power grid to charge EVs at that rate.Therefore,a Level 3(fast DC)EV charging station using a solar farm by implementing distributed maximum power point tracking is utilized to address this issue.Finally,the simulation result is reported using MATLAB®,LTSPICE and the System Advisor Model.Simulation results show that the proposed 1-MW solar system will provide 5 MWh of power each day,which is enough to fully charge~120 EVs each day.Additionally,the use of the proposed photovoltaic system benefits the environment by removing a huge amount of greenhouse gases and hazardous pollutants.For example,instead of supplying EVs with power from coal-fired power plants,1989 pounds of CO_(2) will be eliminated from the air per hour.展开更多
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金supported by the National Natural Science Foundation of China under Grant 51777193.
文摘An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
基金supported by National Key Research and Development Program of China–Comprehensive Demonstration Project of Smart Grid Supporting Lowcarbon Winter Olympics(No.2016YFB0900500)
文摘The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a design scheme for a fast charging station for electric vehicles equipped with distributed photovoltaic power generation system taking the area with certain conditions in Beijing as an example construction site. The technical indexes and equipment lectotype covering the general framework and subsystems of the charging station are determined by analyzing the charging service demand of fast charging stations. In this study, the layout of the station is developed and the operation benefits of the station is analyzed. The design scheme realizes the design objective of "rationalization, modularization and intelligentization" of the fast charging station and can be used as reference for the construction of a fast charging network in urban area.
基金supported by the National Key R&D Program of China (No. 2017YFC1500200)National Natural Science Foundation of China (Nos. 41674062 and 41174041)China National Special Fund for Earthquake Scientific Research of Public Interest (No. 201308011)
文摘With the development of the dense array,the surface wave velocity and azimuthal anisotropy under the array can be directly obtained by beamforming the noise cross-correlation functions(NCFs). However, the retrieval of the Green’s function by cross-correlating the seismic noise requires that the noise source has a uniform distribution. For the case with uneven noise source, the azimuthal dependence on the sources in the expression for the spatial coherence function, which corresponds to the NCF in the time domain,has the same form as the azimuthal dependence of the surface wave velocity in weakly anisotropic media. Therefore, the uneven noise source will affect the surface wave anisotropy extraction. In this study, three passive seismic methods, i.e.,beamforming, SPAC(spatial autocorrelation), and NCF, are compared to demonstrate that an uneven source distribution and uneven station distribution have equivalent effects on the outcome from each method. A beamforming method is proposed to directly extract the velocity and azimuthal anisotropy of surface waves. The effect of uneven noise source and/or station distribution on estimating the azimuth anisotropy of surface waves was investigated using data from the ChinArray Phase Ⅱ. A method for correcting the apparent anisotropy in beamforming results caused by an uneven station distribution is suggested.
基金This work was supported by“The National Natural Science Foundation of China(No.41404033)”“The National Science and Technology Basic Work of China(No.2015FY310200)”+1 种基金“The State Key Program of National Natural Science Foundation of China(No.41730109)”“The Jiangsu Dual Creative Teams Program Project Awarded in 2017”and thanks for the data from IGS and iGMAS。
文摘Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.
基金This work was part of the Program of“Study on Optimization and Supply side Reliability of Oil Product Supply Chain Logistics System”funded under the National Natural Science Foundation of China,grant number 51874325.The authors are grateful to all study participants.
文摘To investigate highway petrol station replenishment in initiative distribution mode,this paper develops a mixed-integer linear programming(MILP)model with minimal operational costs that includes loading costs,unloading costs,transport costs and the costs caused by unpunctual distribution.Based on discrete representation,the working day is divided into equal time intervals,and the truck distribution process is decomposed into a pair of tasks including driving,standby,rest,loading and unloading.Each truck must execute one task during a single interval,and the currently executing task is closely related to the preceding and subsequent tasks.By accounting for predictive time-varying sales at petrol stations,real-time road congestion and a series of operational constraints,the proposed model produces the optimal truck dispatch,namely,a detailed task assignment for all trucks during each time interval.The model is tested on a real-world case of a replenishment system comprising eight highway petrol stations,one depot,one garage and eight trucks to demonstrate its applicability and accuracy.
文摘为有效缓解资阳市第二污水处理厂现状处理能力不足导致的污水溢流问题,改善周边水生态环境,新建了规模为5000 m 3/d的应急污水处理工程。该工程采用“多级A/O+磁混凝沉淀”组合工艺,对其中的多级A/O工艺段进行了深化设计,并对本项目的实际运行效果进行了分析。深化设计结果表明,多级A/O反应器级数宜采用2级,流量分配比宜为7∶3,污泥回流比宜为100%。运行期间的监测数据表明,出水指标均满足《四川省岷江、沱江流域水污染物排放标准》(DB51/2311-2016),其中的COD Cr、TP和TN的去除率分别为96.6%、97.6%和87.2%。通过设置初段硝化液回流,充分发挥初级缺氧池的脱氮能力,使多级A/O工艺的脱氮效率得到了强化。该项目采用的组合工艺简单有效,出水效果好,为城市溢流污水的高标准排放提供了一种更优选择。
基金Supported by National S&T Major Program of China(2013ZX03003002-003)
文摘A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.
文摘The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.
文摘This paper deals with a type of servicing machines model, which service station has a life time of the kth Er-langian distribution and can be repaired just like a new one. The cyclic time and the inefficiency quantities of this system in equilibrium are obtained.
基金support of the National Science Foundation(NSF)under Award Number:2115427 is gratefully acknowledged.SRS RN:Sustainable Transportation Electrification for an Equitable and Resilient Society(STEERS).
文摘Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the possible power generated.Maximum power point tracking is needed in order to make sure that,at any time,the maximum power will be extracted from the photovoltaic system.However,maximum power point tracking is not a suitable solution for mismatches and partial shading conditions.To overcome the drawbacks of maximum power point tracking due to mismatches and shadows,distributed maximum power point tracking is util-ized in this paper.The solar farm can be distributed in different ways,including one DC-DC converter per group of modules or per module.In this paper,distributed maximum power point tracking per module is implemented,which has the highest efficiency.This technology is applied to electric vehicles(EVs)that can be charged with a Level 3 charging station in<1 hour.However,the problem is that charging an EV in<1 hour puts a lot of stress on the power grid,and there is not always enough peak power reserve in the existing power grid to charge EVs at that rate.Therefore,a Level 3(fast DC)EV charging station using a solar farm by implementing distributed maximum power point tracking is utilized to address this issue.Finally,the simulation result is reported using MATLAB®,LTSPICE and the System Advisor Model.Simulation results show that the proposed 1-MW solar system will provide 5 MWh of power each day,which is enough to fully charge~120 EVs each day.Additionally,the use of the proposed photovoltaic system benefits the environment by removing a huge amount of greenhouse gases and hazardous pollutants.For example,instead of supplying EVs with power from coal-fired power plants,1989 pounds of CO_(2) will be eliminated from the air per hour.