Long-term loosening is the major cause of failure of arthroplasty. One of the major causes is stress shielding, initiated by the large stiffness difference between prosthesis and bone tissue. Therefore, prosthesis wit...Long-term loosening is the major cause of failure of arthroplasty. One of the major causes is stress shielding, initiated by the large stiffness difference between prosthesis and bone tissue. Therefore, prosthesis with reduced stiffness properties to match those of the bone tissue may be able to minimize such a problem. Design with porous structure is believed to reduce the stiffness of the prosthesis, however at the cost of decreased strength. In this study, a patient-specific bone-implant finite element model was developed for contact mechanics study of hip joint, and algorithms were developed to adjust the elastic modulus of elements in certain regions of the femoral stem, until optimal properties were achieved according to the pre-defined criterions of the strength and stability of the system. The global safety factor of the optimized femoral stem was 11.3, and 26.4% of elements were designed as solid. The bone volume with density loss was reduced by 40% compared to the solid stem. The methodology developed in this study provides a universal method to design a patient-specific prosthesis with a gradient modulus distribution for the purposes of minimizing the stress shielding effect and extending the lifespan of the implant.展开更多
To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modifi...To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal(MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.展开更多
Characterizing nonhomogeneous elastic property distribution of soft tissues plays a crucial role in disease diagnosis and treatment.In this paper,we will apply the optical coherence elastography to reconstruct the she...Characterizing nonhomogeneous elastic property distribution of soft tissues plays a crucial role in disease diagnosis and treatment.In this paper,we will apply the optical coherence elastography to reconstruct the shear modulus elastic property distribution of a bilayer solid.In the computational aspect,we adopt a well-established inverse technique that solves for every nodal shear modulus in the problem domain(NO method).Additionally,we also propose a novel inverse method that assumes the shear moduli merely vary along the thickness of the bilayer solid(TO method).The inversion tests using simulated data demonstrate that TO method performs better in reconstructing the shear modulus distribution.Further,we utilize the experimental data obtained from the optical coherence tomography to reconstruct the shear modulus distribution of a bilayer phantom.We observe that the quality of the reconstructed shear modulus distribution obtained by the partial displacement measurement is better than that obtained by the full-field displacement measurement.Particularly,merely using the displacement component along the loading direction significantly improves the reconstructed results.This work is of great significance in applying optical coherence elastography(OCE)to characterize the elastic property distribution of layered soft tissues such as skins and corneas.展开更多
基金The work was supported by the funding from the program of the National Nature Science Foundation of China (Grant Nos. 51205303 and 51323007), the pro- gram of Scientific and Technological Innovation in Shaanxi Province (Grant No. 2014KTZB01-02), the Fundamental Research Funds for the Central Universities, and Research Fund for the Doctoral Program (RFDP) of Higher Education of China.
文摘Long-term loosening is the major cause of failure of arthroplasty. One of the major causes is stress shielding, initiated by the large stiffness difference between prosthesis and bone tissue. Therefore, prosthesis with reduced stiffness properties to match those of the bone tissue may be able to minimize such a problem. Design with porous structure is believed to reduce the stiffness of the prosthesis, however at the cost of decreased strength. In this study, a patient-specific bone-implant finite element model was developed for contact mechanics study of hip joint, and algorithms were developed to adjust the elastic modulus of elements in certain regions of the femoral stem, until optimal properties were achieved according to the pre-defined criterions of the strength and stability of the system. The global safety factor of the optimized femoral stem was 11.3, and 26.4% of elements were designed as solid. The bone volume with density loss was reduced by 40% compared to the solid stem. The methodology developed in this study provides a universal method to design a patient-specific prosthesis with a gradient modulus distribution for the purposes of minimizing the stress shielding effect and extending the lifespan of the implant.
基金Project supported by the National Natural Science foundation of China(Grant Nos.51571165 and 51371151)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.3102015BJ(II)ZS001)
文摘To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal(MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.
基金The authors acknowledge the support from the National Natural Science Foundation of China(12002075,11732004,12021002)the National Key Research and Development Plan(2020YFB1709401)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation(11821202)the Natural Science Foundation of Liaoning Province in China(2021-MS-128).
文摘Characterizing nonhomogeneous elastic property distribution of soft tissues plays a crucial role in disease diagnosis and treatment.In this paper,we will apply the optical coherence elastography to reconstruct the shear modulus elastic property distribution of a bilayer solid.In the computational aspect,we adopt a well-established inverse technique that solves for every nodal shear modulus in the problem domain(NO method).Additionally,we also propose a novel inverse method that assumes the shear moduli merely vary along the thickness of the bilayer solid(TO method).The inversion tests using simulated data demonstrate that TO method performs better in reconstructing the shear modulus distribution.Further,we utilize the experimental data obtained from the optical coherence tomography to reconstruct the shear modulus distribution of a bilayer phantom.We observe that the quality of the reconstructed shear modulus distribution obtained by the partial displacement measurement is better than that obtained by the full-field displacement measurement.Particularly,merely using the displacement component along the loading direction significantly improves the reconstructed results.This work is of great significance in applying optical coherence elastography(OCE)to characterize the elastic property distribution of layered soft tissues such as skins and corneas.