The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average...The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4.展开更多
The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and exper...The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and experiments. By comparing the numerical analyses with the experiments, a proper numerical model was obtained. From the results of the numerical analyses and the experiments, the effects of process parameters on entrance diameters of drilled holes, shapes of the holes, taper angles of the holes and temperature distributions in the vicinity of the holes were examined quantitatively. In addition, the optimal drilling condition was estimated to improve the quality of the drilled holes.展开更多
In order to investigate the effects of powder materials and processing parameters on thermal and stress field during laser powder deposition (LPD), a finite element model was developed with the help of ANSYS softwar...In order to investigate the effects of powder materials and processing parameters on thermal and stress field during laser powder deposition (LPD), a finite element model was developed with the help of ANSYS software. The finite element model was verified by the comparison between the experimental results and computed results. Then LPD processes with different powder materials and processing parameters were simulated by using the FE model. The results show that less difference of thermal conductivity and thermal expansion coefficient between powder material and substrate material produces lower residual stress; higher laser power, laser scanning speed and smaller laser beam diameter can lead higher peak temperature and higher residual stress. The research opens up a way to rational selection of the powder materials and processing parameters for ensured quality.展开更多
Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental meth...Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental method,computational fluid dynamics(CFD)modeling is a powerful and convenient tool for simulating the spray process.Based on the verified CFD model,different materials of atomizer were simulated to investigate the effect on droplet size and distribution in this work.The modeling result proved that the droplet size and distribution were influenced by the resistance coefficient of materials,wherein the Reynolds number could change the effect of roughness along with the change of mass flow rate on spray process.The results in this work have implication for controlling droplet size through developing new spray nozzle with different materials or surface coating.展开更多
The quality standards for Fructus Comi have been established based on the effects of the manufacturing processes.Three critical process parameters(CPPs)of extraction,filtration,and concentration to prepare Fructus Com...The quality standards for Fructus Comi have been established based on the effects of the manufacturing processes.Three critical process parameters(CPPs)of extraction,filtration,and concentration to prepare Fructus Comi concentrate were identified by Plackett-Burman design with a single batch of Fructus Corni,which were heating medium temperature,extraction time,and water addition.Morroniside yield,loganin yield,and dry matter yield were process critical quality attributes(CQAs).CPPs arranged with a Box-Behnken design were applied to treat different batches of Fructus Comi After constructing a model that included CPPs,material propertie s,and process CQAs,loganin content was found to be the critical material attribute(CMA).The design space was calculated with a probability method.According to the limits of process CQAs,the minimum content of loganin in Fructus Corni was calculated with an error propagation method,which was 6.92 mg·g^(-1).When the content of loganin in Fructus Corni reaches up to 6.92 mg·g^(-1),the material is considered high-quality and is most suitable for the process.High-quality material can be used for production of Fructus Comi concentrate.This method can also be used to set material quality standards for other Chinese medicines.展开更多
The magnetic force acting on workpiece to be machined plays a significantly important role in magnetic abrasive polishing process.But in a case of polishing nonferrous materials,the strength of magnetic force is very ...The magnetic force acting on workpiece to be machined plays a significantly important role in magnetic abrasive polishing process.But in a case of polishing nonferrous materials,the strength of magnetic force is very low and it leads lower polishing efficiency.The magnesium alloy that has superior mechanical properties for industrial application such as a lightweight and high specific strength is one of the most famous nonferrous materials.An improving strategy of the magnetic force for the AZ31 magnesium alloy installed with a permanent magnet was proposed and experimental verification was carried out.For the proposed strategy,the effect of process parameters on the surface roughness of the AZ31 magnesium alloy was evaluated by a design of experimental method.展开更多
Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medica...Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.展开更多
Based on the Faraday’s Law, the shape evolution model was calculated depending on a function of time, and the influence of the variable current efficiency which was brought by the passivating electrolyte was included...Based on the Faraday’s Law, the shape evolution model was calculated depending on a function of time, and the influence of the variable current efficiency which was brought by the passivating electrolyte was included. The final shape determination was obtained by solving the model of electric-field distribution by the finite element method, at the same time flow parameters influencing on the shaping process were also considered. The results show that the experimental results are in close agreement with the theoretical ones.展开更多
To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in th...To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m^3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 μm, and the tap density is increased from 2.7 to 6.2 g/cm^3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.展开更多
This study evaluated the application of the European flood forecasting operational real time system (EFFORTS) to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydromet...This study evaluated the application of the European flood forecasting operational real time system (EFFORTS) to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station), the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the ;simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.展开更多
基金supported by the National Natural Science Foundation of China (No. 50274021)
文摘The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4.
基金supported by a grant-in-aid of Regional Innovation Center(RIC),New Technology Development and Research Center of Laser Application in Chosun University,Korea.
文摘The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and experiments. By comparing the numerical analyses with the experiments, a proper numerical model was obtained. From the results of the numerical analyses and the experiments, the effects of process parameters on entrance diameters of drilled holes, shapes of the holes, taper angles of the holes and temperature distributions in the vicinity of the holes were examined quantitatively. In addition, the optimal drilling condition was estimated to improve the quality of the drilled holes.
文摘In order to investigate the effects of powder materials and processing parameters on thermal and stress field during laser powder deposition (LPD), a finite element model was developed with the help of ANSYS software. The finite element model was verified by the comparison between the experimental results and computed results. Then LPD processes with different powder materials and processing parameters were simulated by using the FE model. The results show that less difference of thermal conductivity and thermal expansion coefficient between powder material and substrate material produces lower residual stress; higher laser power, laser scanning speed and smaller laser beam diameter can lead higher peak temperature and higher residual stress. The research opens up a way to rational selection of the powder materials and processing parameters for ensured quality.
基金financially supported by National Natural Science Foundation of China(21878039,21822804,and 21676047)Dalian Science and Technology Major Project(2018ZD14GX002)NSFC-Liaoning United Fund(U1608222).
文摘Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental method,computational fluid dynamics(CFD)modeling is a powerful and convenient tool for simulating the spray process.Based on the verified CFD model,different materials of atomizer were simulated to investigate the effect on droplet size and distribution in this work.The modeling result proved that the droplet size and distribution were influenced by the resistance coefficient of materials,wherein the Reynolds number could change the effect of roughness along with the change of mass flow rate on spray process.The results in this work have implication for controlling droplet size through developing new spray nozzle with different materials or surface coating.
基金Supported by the Open Fund of Key Laboratory of Modern Chinese Medicine Preparations,Ministry of Education,Jiangxi University of Traditional Chinese Medicine and First-class Discipline Construction Project of Jiangxi Province(JXSYLXK-ZHYAO009,JXSYLXK-ZHYAO010)。
文摘The quality standards for Fructus Comi have been established based on the effects of the manufacturing processes.Three critical process parameters(CPPs)of extraction,filtration,and concentration to prepare Fructus Comi concentrate were identified by Plackett-Burman design with a single batch of Fructus Corni,which were heating medium temperature,extraction time,and water addition.Morroniside yield,loganin yield,and dry matter yield were process critical quality attributes(CQAs).CPPs arranged with a Box-Behnken design were applied to treat different batches of Fructus Comi After constructing a model that included CPPs,material propertie s,and process CQAs,loganin content was found to be the critical material attribute(CMA).The design space was calculated with a probability method.According to the limits of process CQAs,the minimum content of loganin in Fructus Corni was calculated with an error propagation method,which was 6.92 mg·g^(-1).When the content of loganin in Fructus Corni reaches up to 6.92 mg·g^(-1),the material is considered high-quality and is most suitable for the process.High-quality material can be used for production of Fructus Comi concentrate.This method can also be used to set material quality standards for other Chinese medicines.
基金supporting by theMinistry of Education,Science Technology(MEST)and Korea Industrial Technology Foundation(KOTEF)through the Human Resource Training Project for Regional Innovation(Design and Process Optimizationof Reactor System for Pre-Polymer Production,20070130134117)supported byPukyong National University Research Fund in 2006 (Effect Evaluation and Optimization of Process Parameters on Magnetic Abrasive Polishing,PKS-2006-022).
文摘The magnetic force acting on workpiece to be machined plays a significantly important role in magnetic abrasive polishing process.But in a case of polishing nonferrous materials,the strength of magnetic force is very low and it leads lower polishing efficiency.The magnesium alloy that has superior mechanical properties for industrial application such as a lightweight and high specific strength is one of the most famous nonferrous materials.An improving strategy of the magnetic force for the AZ31 magnesium alloy installed with a permanent magnet was proposed and experimental verification was carried out.For the proposed strategy,the effect of process parameters on the surface roughness of the AZ31 magnesium alloy was evaluated by a design of experimental method.
文摘Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.
文摘Based on the Faraday’s Law, the shape evolution model was calculated depending on a function of time, and the influence of the variable current efficiency which was brought by the passivating electrolyte was included. The final shape determination was obtained by solving the model of electric-field distribution by the finite element method, at the same time flow parameters influencing on the shaping process were also considered. The results show that the experimental results are in close agreement with the theoretical ones.
基金financially supported by the 2012 Western Materials Innovation Foundation of China (No. XBCL-1-06)the Science and Technology Coordinating Innovative Engineering Project of Shaanxi Province of China (No. 2014KTCQ01-35)+1 种基金the Natural Science Foundation of Shaanxi Province of China (No. 2014JM6226)the Specialized Research Fund of Education Commission of Shaanxi Province of China (No. 2013JK0905)
文摘To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m^3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 μm, and the tap density is increased from 2.7 to 6.2 g/cm^3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.
基金supported by the ADB Loan for Flood Management Project in the Yellow River Basin (Grant No. YH-SW-XH-02)
文摘This study evaluated the application of the European flood forecasting operational real time system (EFFORTS) to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station), the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the ;simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.