As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation...As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.展开更多
Research on the stochastic theory and its application have been conducted in China for 40 years.This paper emphasizes on the basic theory of stochastic medium and its practice in predicting the ground movements and de...Research on the stochastic theory and its application have been conducted in China for 40 years.This paper emphasizes on the basic theory of stochastic medium and its practice in predicting the ground movements and deformations induced by underground and open pit mining,near surface excavation of tunnel and so on.展开更多
The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC)...The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.展开更多
Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect o...Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect of thawless material in orebody, filling effect caused by cubical expansibility of hydrate crystallization and uplifting effect of hard rock layer over cranny belt. The movement and deformation of ground surface caused by underground water solution mining is believed to be much weaker than that caused by well lane mining, which can be predicted by the stochastic medium theory method. On the basis of analysis on the engineering practice of water solution mining, its corresponding parameters can be obtained from the in-site data of the belt water and sand filling mining in engineering analog approach.展开更多
In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis,...In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was ...A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.展开更多
The channel flow model was gradually being accepted with the more important multidisci- plinary evidences from geology and geophysics, but how the lower crustal flow influenced the surface deformation quantitatively w...The channel flow model was gradually being accepted with the more important multidisci- plinary evidences from geology and geophysics, but how the lower crustal flow influenced the surface deformation quantitatively was unknown. Here, we develop a three-dimensional viscoelastic model to explore the mechanical relations between the lower crustal flow and the surface deformation in western Sichuan. Based on numerous tests, our results show that the modeled results fit well with the observed GPS data when the lower crust flows faster than the upper crust about 11 mm/a in the rhombic block, which can be useful to understand the possible mechanism of the surface deformation in western Siehuan. Moreover, taking the Xianshuihe fault as an example, we preliminarily analyze the relation between the active fault and stress field, according to the boundary constraints that deduced from the best model. The results show that the maximum shear stress on the Xianshuihe fault zone is mainly located in the fault terminal, intersections and the bend of the fault geometry, the stress level on the northwestern segment that has the high slip rate is relatively high. Additionally, with the reduction of the Young's modulus in the fault zone, it's conducive to generate the greater strain distribution, hence forming the high stress level.展开更多
基金Financial supports for this work, are provided by the National Natural Science Foundation of China (NSFC) & Shenhua Group Corporation Limited key support project of the coal joint fund (U1361203) and NSFC under Grant No. 41501562. Thanks are also due to some participants for rendering assistant cooperation during studies.
文摘As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.
文摘Research on the stochastic theory and its application have been conducted in China for 40 years.This paper emphasizes on the basic theory of stochastic medium and its practice in predicting the ground movements and deformations induced by underground and open pit mining,near surface excavation of tunnel and so on.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51639002 and 51379118)the SDUST Research Fund(Grant No.2015KYTD104)
文摘The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.
基金Project(40404001) supported by the National Natural Science Foundation of China
文摘Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect of thawless material in orebody, filling effect caused by cubical expansibility of hydrate crystallization and uplifting effect of hard rock layer over cranny belt. The movement and deformation of ground surface caused by underground water solution mining is believed to be much weaker than that caused by well lane mining, which can be predicted by the stochastic medium theory method. On the basis of analysis on the engineering practice of water solution mining, its corresponding parameters can be obtained from the in-site data of the belt water and sand filling mining in engineering analog approach.
文摘In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
文摘A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.
基金supported by the Basic Research Fund from the Institute of Crustal Dynamics, China Earthquake Administration (Nos. ZDJ2012-09, ZDJ2010-12)the National Key Technology Research and Development Program (No. 2012BAK19B03)
文摘The channel flow model was gradually being accepted with the more important multidisci- plinary evidences from geology and geophysics, but how the lower crustal flow influenced the surface deformation quantitatively was unknown. Here, we develop a three-dimensional viscoelastic model to explore the mechanical relations between the lower crustal flow and the surface deformation in western Sichuan. Based on numerous tests, our results show that the modeled results fit well with the observed GPS data when the lower crust flows faster than the upper crust about 11 mm/a in the rhombic block, which can be useful to understand the possible mechanism of the surface deformation in western Siehuan. Moreover, taking the Xianshuihe fault as an example, we preliminarily analyze the relation between the active fault and stress field, according to the boundary constraints that deduced from the best model. The results show that the maximum shear stress on the Xianshuihe fault zone is mainly located in the fault terminal, intersections and the bend of the fault geometry, the stress level on the northwestern segment that has the high slip rate is relatively high. Additionally, with the reduction of the Young's modulus in the fault zone, it's conducive to generate the greater strain distribution, hence forming the high stress level.