Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beiji...Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beijing and significant land use changes have taken place since 2004. With the combination of GIS and Dinamica EGO(Environment for Geoprocessing Objects) model, the quantitative structure and spatial distribution of land use in Mentougou from 2006 to 2014 are analyzed in this paper. Considering topography has influence on the action mode of driving factors, the research area is divided into two parts based on elevation, mountainous area above 300 m, plain and shallow mountainous area below 300 m. Based on cellular automata theory, the probability of land use change is calculated by Weights of Evidence method and the spatial distribution of land use is simulated by means of two complementary spatial transition functions: Expander and Patcher. Land use pattern of Menougou in 2030 for three kinds of scenarios: trend development, rapid development and ecological protection are simulated. The comparison shows that the trend development scenario is more reasonable based on social, economic and environmental considerations and other scenarios provide a reference for improving irrational land use.展开更多
Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to un...Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.展开更多
Malaria is a major cause of morbidity and mortality in Apac district, Northern Uganda. Hence, the study aimed to model malaria incidences with respect to climate variables for the period 2007 to 2016 in Apac district....Malaria is a major cause of morbidity and mortality in Apac district, Northern Uganda. Hence, the study aimed to model malaria incidences with respect to climate variables for the period 2007 to 2016 in Apac district. Data on monthly malaria incidence in Apac district for the period January 2007 to December 2016 was obtained from the Ministry of health, Uganda whereas climate data was obtained from Uganda National Meteorological Authority. Generalized linear models, Poisson and negative binomial regression models were employed to analyze the data. These models were used to fit monthly malaria incidences as a function of monthly rainfall and average temperature. Negative binomial model provided a better fit as compared to the Poisson regression model as indicated by the residual plots and residual deviances. The Pearson correlation test indicated a strong positive association between rainfall and malaria incidences. High malaria incidences were observed in the months of August, September and November. This study showed a significant association between monthly malaria incidence and climate variables that is rainfall and temperature. This study provided useful information for predicting malaria incidence and developing the future warning system. This is an important tool for policy makers to put in place effective control measures for malaria early enough.展开更多
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurre...The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere.展开更多
To improve forecasting and sustained control level of underground pests, trapping quantity of underground pests (black cutworm,mole cricket and scar-ab) by lamps and their field dynamics in Hangzhou district from 20...To improve forecasting and sustained control level of underground pests, trapping quantity of underground pests (black cutworm,mole cricket and scar-ab) by lamps and their field dynamics in Hangzhou district from 2005 to 2011 were investigated in the paper. The results showed that different pests had obvious differences in population dynamic. The black cutworm (Agrotis ypsilon) had several damage peaks (late May, late June and late July) and the moth amount in early period was relatively high. The mole cricket ( Gryllotalpa africana) had two damage peaks (late May to early July, early September to mid and late October). The scarab (Anomala corpulenta) had one damage peak (late May to late June). There were periodic changes in total quantity of underground pests among years, and the peak period appeared in the year of 2005, 2007 to 2009 and 2011, respectively. On this basis, temperature, humidity, rainfall and light were used as forecas- ting factors, using the method of stepwise regression, 19 factors with significant correlation were screened out and prediction models for occurrence quantity and oc- currence period of the three pests were established. By using accuracy degree judge model for verification, the score values of prediction model for occurrence quan-tity and occurrence period of the three underground pests were more than 58 and 70, which indicated that the historical coincident rate and prediction accuracy of estabhshed prediction models were good.展开更多
水资源干旱是限制灌区可持续发展的关键因素。为提高灌区的干旱防治能力,使其更好的发挥其在节水、减灾方面的作用,以淠史杭灌区为研究区,通过划分水资源配置子单元和设置调蓄节点,采用公平性最优和供水缺水率最小作为目标函数,总量控...水资源干旱是限制灌区可持续发展的关键因素。为提高灌区的干旱防治能力,使其更好的发挥其在节水、减灾方面的作用,以淠史杭灌区为研究区,通过划分水资源配置子单元和设置调蓄节点,采用公平性最优和供水缺水率最小作为目标函数,总量控制、供水能力、分质供水等作为约束条件,采用基于精英策略的非支配遗传改进算法求解,构建区域General Water Allocation and Simulation Model(GWAS)模型;以2022年为现状基准年,与2023规划年组合,分为连续干旱与不连续干旱两大类,基于灌区水资源“应急干旱三次平衡”调控思想,分析灌区水资源在不同干旱情景下缺水的基础上,展开水资源抗旱配置研究,推演分析不同抗旱方案下水资源供需平衡情况。结果表明:连续干旱年中,灌区2023规划年在情景Ⅰ(P=90%)、情景Ⅱ(P=80%)来水频率下,各乡镇配置单元均存在不同程度的缺水情况,区域总缺水率分别为35.1%、20.8%;不连续干旱年中,2023规划年在情景Ⅲ(P=50%)来水频率下,模型基准配置水量基本可以满足区域各乡镇水量需求,区域总缺水率为5.9%。经不同抗旱方案尾部泵站补水、调整作物种植结构及外调水的优化配置后,三种情景下区域总缺水率最终都降为0%,优化后各配置单元供水改善效果显著。研究成果可为淠史杭灌区未来在应对不同干旱类型情景下水资源的合理调整提供技术支撑,并且可为实现该区域水资源统一管理和水量的统一调配提供理论依据。展开更多
基金supported by the National Natural Science Foundation of China under(Grant No.41877533)Beijing Social Science Foundation(Grant No.18GLB014)
文摘Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beijing and significant land use changes have taken place since 2004. With the combination of GIS and Dinamica EGO(Environment for Geoprocessing Objects) model, the quantitative structure and spatial distribution of land use in Mentougou from 2006 to 2014 are analyzed in this paper. Considering topography has influence on the action mode of driving factors, the research area is divided into two parts based on elevation, mountainous area above 300 m, plain and shallow mountainous area below 300 m. Based on cellular automata theory, the probability of land use change is calculated by Weights of Evidence method and the spatial distribution of land use is simulated by means of two complementary spatial transition functions: Expander and Patcher. Land use pattern of Menougou in 2030 for three kinds of scenarios: trend development, rapid development and ecological protection are simulated. The comparison shows that the trend development scenario is more reasonable based on social, economic and environmental considerations and other scenarios provide a reference for improving irrational land use.
基金financially supported by the Natural Science Foundation of China(Grant No:10872219)
文摘Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.
文摘Malaria is a major cause of morbidity and mortality in Apac district, Northern Uganda. Hence, the study aimed to model malaria incidences with respect to climate variables for the period 2007 to 2016 in Apac district. Data on monthly malaria incidence in Apac district for the period January 2007 to December 2016 was obtained from the Ministry of health, Uganda whereas climate data was obtained from Uganda National Meteorological Authority. Generalized linear models, Poisson and negative binomial regression models were employed to analyze the data. These models were used to fit monthly malaria incidences as a function of monthly rainfall and average temperature. Negative binomial model provided a better fit as compared to the Poisson regression model as indicated by the residual plots and residual deviances. The Pearson correlation test indicated a strong positive association between rainfall and malaria incidences. High malaria incidences were observed in the months of August, September and November. This study showed a significant association between monthly malaria incidence and climate variables that is rainfall and temperature. This study provided useful information for predicting malaria incidence and developing the future warning system. This is an important tool for policy makers to put in place effective control measures for malaria early enough.
基金funded by the National Natural Science Foundation of China(NSFC)(grant numbers 41472066,40972063 and 41672038)the Program of the Deep Exploration in China(SinoProb-03-05)+1 种基金the National KeyR&S Program of China(2016 YFC0600209)the Land and Resources Science and Techonolgy Foundation of Anhui Province(2016-K-03 and No.2014-K-03)
文摘The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere.
基金Supported by Science and Technology Project of Hangzhou City (20110232B17)
文摘To improve forecasting and sustained control level of underground pests, trapping quantity of underground pests (black cutworm,mole cricket and scar-ab) by lamps and their field dynamics in Hangzhou district from 2005 to 2011 were investigated in the paper. The results showed that different pests had obvious differences in population dynamic. The black cutworm (Agrotis ypsilon) had several damage peaks (late May, late June and late July) and the moth amount in early period was relatively high. The mole cricket ( Gryllotalpa africana) had two damage peaks (late May to early July, early September to mid and late October). The scarab (Anomala corpulenta) had one damage peak (late May to late June). There were periodic changes in total quantity of underground pests among years, and the peak period appeared in the year of 2005, 2007 to 2009 and 2011, respectively. On this basis, temperature, humidity, rainfall and light were used as forecas- ting factors, using the method of stepwise regression, 19 factors with significant correlation were screened out and prediction models for occurrence quantity and oc- currence period of the three pests were established. By using accuracy degree judge model for verification, the score values of prediction model for occurrence quan-tity and occurrence period of the three underground pests were more than 58 and 70, which indicated that the historical coincident rate and prediction accuracy of estabhshed prediction models were good.
文摘为提高灌溉农田中灌溉水体的识别精度,以河套灌区解放闸灌域作为研究区,基于Sentinel-2遥感影像,结合灌区实际情况对地表水体提取模型(WatNet)进行改进,得到MWatNet模型并提取灌溉水体。采用总体精度(Overall accuracy,OA)、平均交并比(Mean intersection over union,MIoU)、F1值等水体提取精度指标进行综合评价。结果表明:改进后的地表水体提取模型(MWatNet)在解放闸灌域农田灌溉水体的提取上具有较好的识别精度,模型总体精度达到96%,平均交并比达到83%,F1值为80%,实地调研验证准确度为85.7%;对比原WatNet、水体语义分割模型(Deeplabv3_plus)和水体提取模型(Deepwatermapv2),MWatNet在灌溉水体提取的连结性、剔除道路和城镇干扰等方面,均表现出更好的效果和模型运行效率。利用该模型可以实现灌溉水体定量化表征,为灌溉用水调度提供了数据支撑。
文摘水资源干旱是限制灌区可持续发展的关键因素。为提高灌区的干旱防治能力,使其更好的发挥其在节水、减灾方面的作用,以淠史杭灌区为研究区,通过划分水资源配置子单元和设置调蓄节点,采用公平性最优和供水缺水率最小作为目标函数,总量控制、供水能力、分质供水等作为约束条件,采用基于精英策略的非支配遗传改进算法求解,构建区域General Water Allocation and Simulation Model(GWAS)模型;以2022年为现状基准年,与2023规划年组合,分为连续干旱与不连续干旱两大类,基于灌区水资源“应急干旱三次平衡”调控思想,分析灌区水资源在不同干旱情景下缺水的基础上,展开水资源抗旱配置研究,推演分析不同抗旱方案下水资源供需平衡情况。结果表明:连续干旱年中,灌区2023规划年在情景Ⅰ(P=90%)、情景Ⅱ(P=80%)来水频率下,各乡镇配置单元均存在不同程度的缺水情况,区域总缺水率分别为35.1%、20.8%;不连续干旱年中,2023规划年在情景Ⅲ(P=50%)来水频率下,模型基准配置水量基本可以满足区域各乡镇水量需求,区域总缺水率为5.9%。经不同抗旱方案尾部泵站补水、调整作物种植结构及外调水的优化配置后,三种情景下区域总缺水率最终都降为0%,优化后各配置单元供水改善效果显著。研究成果可为淠史杭灌区未来在应对不同干旱类型情景下水资源的合理调整提供技术支撑,并且可为实现该区域水资源统一管理和水量的统一调配提供理论依据。