Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those ...Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina...With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.展开更多
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa...Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.展开更多
The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of ...The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.展开更多
In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown externa...In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.展开更多
The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau...The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.展开更多
High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is p...High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di...This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.展开更多
Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhi...Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.展开更多
A composite control scheme consisting of modepredictive control (MPC) and disturbance observer (DOB) iproposed to solve the control performance degradationproblem of the turbidity of the treated water in the prese...A composite control scheme consisting of modepredictive control (MPC) and disturbance observer (DOB) iproposed to solve the control performance degradationproblem of the turbidity of the treated water in the presence osignificant changes in raw water quality, water flow rate andinternal model mismatch disturbances. The MPC is employedas a feedback controller for the coagulation process with alarge time delay. The DOB is adopted to estimate the severedisturbances in the turbidity control, such as large changes inraw water quality and water flow rate. The estimated valuesare applied for feed-forward compensation to rejecdisturbances. Finally, the disturbance rejection performancesfor step disturbances and time-varying disturbances in thenominal case and model mismatch case are tested. Thesimulation results illustrate that, compared with the MPCmethod, the proposed method can significantly improve thedisturbance rejection performance in the turbidity control othe treated water, no matter if in the presence of externadisturbances or internal model mismatch disturbances.展开更多
This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic os...This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic oscillation,position the manipulator in a desired angle,and ensure the finitetime convergence of disturbances,we develop three disturbance observers(DOs)and boundary controllers.Under the derived DOs-based control schemes,the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time.In the end,numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.展开更多
It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical...It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.展开更多
This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front a...This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model.A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration.The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out,which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robus...A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.展开更多
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly desi...In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.展开更多
基金This work was supported in part by the JSPS(Japan Society for the Promotion of Science)KAKENHI(20H04566,22H03998)the National Natural Science Foundation of China(61873348)+1 种基金the Natural Science Foundation of Hubei Province,China(2020CFA031)Wuhan Applied Foundational Frontier Project(2020010601012175).
文摘Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses.This paper presents a deep observation on and a comparison between two of those methods:the generalized extended-state observer(GESO)and the equivalent input disturbance(EID)from assumptions,system configurations,stability conditions,system design,disturbance-rejection performance,and extensibility.A time-domain index is introduced to assess the disturbance-rejection performance.A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method.A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
文摘With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.
基金supported by the National Natural Science Foundationof China(62273029).
文摘Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.
基金supported in part by the National Natural Science Foundation of China under Grant 51507188Doctoral Research Startup Foundation of Hubei University of Technology under Grant XJ2021000302。
文摘The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.
基金supported in part by the National Natural ScienceFoundation of China (U2013201)the National Science Fund for Distinguished Young Scholars (61825302)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX20_0208)。
文摘In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62203246, 62003127, and 62003183)。
文摘The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.
基金supported by the National Natural Science Foundation of China(Grant 62273029).
文摘High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金supported by National Natural Science Foundation of China (Grant Nos.52072309 and 62303379)Beijing Institute of Spacecraft System Engineering Research Project (Grant NO.JSZL2020203B004)+1 种基金Natural Science Foundation of Shaanxi Province,Chinese (Grant NOs.2023-JC-QN-0003 and 2023-JC-QN-0665)Industry-University-Research Innovation Fund of Ministry of Education for Chinese Universities (Grant NO.2022IT189)。
文摘This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.
基金Supported by National Excellent Natural Science Foundation of China(Grant No.52122503)Hebei Provincial Natural Science Foundation of China(Grant No.E2022203002)+2 种基金The Yanzhao’s Young Scientist Project of China(Grant No.E2023203258)Science Research Project of Hebei Education Department of China(Grant No.BJK2022060)Hebei Provincial Graduate Innovation Funding Project of China(Grant No.CXZZSS2022129).
文摘Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.
基金The National Natural Science Foundation of China(No.61504027)the Natural Science Foundation of Jiangsu Province(No.BK20140647)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A composite control scheme consisting of modepredictive control (MPC) and disturbance observer (DOB) iproposed to solve the control performance degradationproblem of the turbidity of the treated water in the presence osignificant changes in raw water quality, water flow rate andinternal model mismatch disturbances. The MPC is employedas a feedback controller for the coagulation process with alarge time delay. The DOB is adopted to estimate the severedisturbances in the turbidity control, such as large changes inraw water quality and water flow rate. The estimated valuesare applied for feed-forward compensation to rejecdisturbances. Finally, the disturbance rejection performancesfor step disturbances and time-varying disturbances in thenominal case and model mismatch case are tested. Thesimulation results illustrate that, compared with the MPCmethod, the proposed method can significantly improve thedisturbance rejection performance in the turbidity control othe treated water, no matter if in the presence of externadisturbances or internal model mismatch disturbances.
基金supported in part by National Natural Science Foundation of China(61803109)in part by the Innovative School Project of Education Department of Guangdong(2017KQNCX153)+3 种基金in part by the Science and Technology Planning Project of Guangzhou City(201904010494)in part by the Scientific Research Projects of Guangzhou Education Bureau(202032793)in part by the China Postdoctoral Science Foundation(2019M660463)in part by the Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing(FRFIDRY-19-024)。
文摘This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic oscillation,position the manipulator in a desired angle,and ensure the finitetime convergence of disturbances,we develop three disturbance observers(DOs)and boundary controllers.Under the derived DOs-based control schemes,the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time.In the end,numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.
基金supported by the National Natural Science Foundation of China (10872030)the Technology Innovation Programme of Beijing Institute of Technology (CX0428)
文摘It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61573165,61520106008,61703178)
文摘This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model.A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration.The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out,which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
基金Project(11202230)supported by the National Natural Science Foundation of China
文摘A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.
基金supported by the National Natural Science Foundation of China(61573184)the Specialized Research Fund for the Doctoral Program of Higher Education(20133218110013)+1 种基金the Six Talents Peak Project of Jainism Province(2012-XRAY-010)the Fundamental Research Funds for theCentral Universities(NE2016101)
文摘In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.