This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina...With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.展开更多
In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However...In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However,strong external disturbances,such as variations of ore hardness and ore size,always exist.It is not easy to make the current of Raymond mill constant due to these strong disturbances.Several control strategies have been proposed to control the grinding processes.However,most of them(such as PID and MPC)reject disturbances merely through feedback regulation and do not deal with the disturbances directly,which may lead to poor control performance when strong disturbances occur.To improve disturbance rejection performance,a control scheme based on PI and disturbance observer is proposed in this work.The scheme combines a feedforward compensation part based on disturbance observer and a feedback regulation part using PI.The test results illustrate that the proposed method can obtain remarkable superiority in disturbance rejection compared with PI method in the Raymond mill grinding processes.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical...It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.展开更多
This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front a...This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model.A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration.The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out,which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.展开更多
In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean cur...In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean currents are combined with the model parameter uncertainties as a compound disturbance.Then a disturbance observer(DO)is introduced to estimate the compound disturbance,which can be achieved within a finite time independent of the initial estimation error.Based on a DO,a novel fixed-time sliding control scheme is developed,by which the follower vehicle can track the leader vehicle with all the states globally stabilized within a given settling time.The effectiveness and performance of the method are demonstrated by numerical simulations.展开更多
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly desi...In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.展开更多
Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controlle...Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.展开更多
A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and param...A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.展开更多
To realize high-precision attitude stabilization of a flexible spacecraft in the presence of complex disturbances and measurement noises,an iterative learning disturbance observer(ILDO)is presented in this paper.First...To realize high-precision attitude stabilization of a flexible spacecraft in the presence of complex disturbances and measurement noises,an iterative learning disturbance observer(ILDO)is presented in this paper.Firstly,a dynamic model of disturbance is built by augmenting the integral of the lumped disturbance as a state.Based on it,ILDO is designed by introducing iterative learning structures.Then,comparative analyses of ILDO and traditional disturbance observers are carried out in frequency domain.It demonstrates that ILDO combines the advantages of high accuracy in disturbance estimation and favorable robustness to measurement noise.After that,an ILDO based composite controller is designed to stabilize the spacecraft attitude.Finally,the effectiveness of the proposed control scheme is verified by simulations.展开更多
A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC...A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC)and the nonlinear disturbance observer(NDO).DSC technique provides the ability to overcome the″explosion of complexity″problem in backstepping control.NDO is adopted to observe the uncertainties in nonlinear flight dynamic system.It has been proved that the proposed design method can guarantee uniformly ultimately boundedness of all the signals in the closed-loop system by Lyapunov stability theorem.Finally,simulation results show that the proposed controller provides better performance than the traditional nonlinear controller.展开更多
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonl...This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.展开更多
To keep multiple missiles to fly in a formation, a robust controller for missile formation is designed. Based on the leader-follower formation mode, two formation relative motion models in different coordinate frames ...To keep multiple missiles to fly in a formation, a robust controller for missile formation is designed. Based on the leader-follower formation mode, two formation relative motion models in different coordinate frames are established and compared. The three-dimension model built in a follower reference coordinate frame is chosen due to its control inputs decoupling, then this model is decoupled into three subsystems. For each subsystem a robust formation controller is proposed based on the disturbance observer and f'mite-time control theory when the external disturbance exits. The stability of the closed-loop system adopting the controller is proved theoretically. Simulation resuits show that the follower can foUow the leader and keep the desired formation despite the external disturbance, which validates the effectiveness of the proposed robust formation controller.展开更多
The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of ...The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.展开更多
Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlin...Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.展开更多
The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejecti...The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to estimate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is proposed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of all closed-loop signals are guaranteed. Finally, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter.展开更多
The objectives of this work are the development and design of disturbance observers (DO’s) for a team of agents that accomplish consensus on agents’ states in the presence of exogenous disturbances. A pinning contro...The objectives of this work are the development and design of disturbance observers (DO’s) for a team of agents that accomplish consensus on agents’ states in the presence of exogenous disturbances. A pinning control strategy is designed for a part of agents of the multiagent systems without disturbances, and this pinning control can bring multiple agents’ states to reaching an expected consensus value. Under the effect of the disturbances, nonlinear disturbance observers are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multiagent systems with disturbances under the composite controller can be achieved. Finally, by applying an example of multiagent systems with switching topologies and exogenous disturbances, the design of the parameters of DO’s are illuminated.展开更多
Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is ...Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.展开更多
To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based ...To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based on the finite-time control strategy is developed to observe the time-varying external disturbance via estimating the upper bound of its first derivative.Meanwhile,the rotation matrix is employed to describe the attitude of SFF for the purpose of the avoidance of singularity and unwinding phenomenon.As for the attitude synchronization and the tracking control architecture,a sliding mode surface(SMS)is given such that the control objective can be achieved.The effectiveness and the validity of the proposed method are elaborated via theoretical analysis and numerical simulations.展开更多
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
文摘With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.
基金Projects(61504027,61573099)supported by the National Natural Science Foundation of ChinaProject(BK20140647)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However,strong external disturbances,such as variations of ore hardness and ore size,always exist.It is not easy to make the current of Raymond mill constant due to these strong disturbances.Several control strategies have been proposed to control the grinding processes.However,most of them(such as PID and MPC)reject disturbances merely through feedback regulation and do not deal with the disturbances directly,which may lead to poor control performance when strong disturbances occur.To improve disturbance rejection performance,a control scheme based on PI and disturbance observer is proposed in this work.The scheme combines a feedforward compensation part based on disturbance observer and a feedback regulation part using PI.The test results illustrate that the proposed method can obtain remarkable superiority in disturbance rejection compared with PI method in the Raymond mill grinding processes.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
基金supported by the National Natural Science Foundation of China (10872030)the Technology Innovation Programme of Beijing Institute of Technology (CX0428)
文摘It is now well known that the time-varying sliding mode control (TVSMC) is characterized by its global robustness against matched model uncertainties and disturbances. The accurate tracking problem of the mechanical system in the presence of the parametric uncertainty and external disturbance is addressed in the TVSMC framework. Firstly, an exponential TVSMC algorithm is designed and the main features are analyzed. Especially, the control parameter is obtained by solving an optimal problem. Subsequently, the global chattering problem in TVSMC is considered. To reduce the static error resulting from the continuous TVSMC algorithm, a disturbance observer based time-varying sliding mode control (DOTVSMC) algorithm is presented. The detailed design principle and the stability of the closed-loop system under the composite controller are provided. Simulation results verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61573165,61520106008,61703178)
文摘This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model.A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration.The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out,which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.
基金supported in part by the National Natural Science Foundation of China(61573077,U1808205)the National Key Research and Development Program of China(2017YFA0700300)
文摘In this paper,we investigate formation tracking control of autonomous underwater vehicles(AUVs)with model parameter uncertainties and external disturbances.The external disturbances due to the wind,waves,and ocean currents are combined with the model parameter uncertainties as a compound disturbance.Then a disturbance observer(DO)is introduced to estimate the compound disturbance,which can be achieved within a finite time independent of the initial estimation error.Based on a DO,a novel fixed-time sliding control scheme is developed,by which the follower vehicle can track the leader vehicle with all the states globally stabilized within a given settling time.The effectiveness and performance of the method are demonstrated by numerical simulations.
基金supported by the National Natural Science Foundation of China(61573184)the Specialized Research Fund for the Doctoral Program of Higher Education(20133218110013)+1 种基金the Six Talents Peak Project of Jainism Province(2012-XRAY-010)the Fundamental Research Funds for theCentral Universities(NE2016101)
文摘In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.
基金Supported by the National Natural Science Foundation of China (61104084, 61290323)the Guangdong Education University-Industry Cooperation Projects (2010B090400410)
文摘Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2012AA041801)supproted by the High-tech Research and Development Program of China
文摘A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.
文摘To realize high-precision attitude stabilization of a flexible spacecraft in the presence of complex disturbances and measurement noises,an iterative learning disturbance observer(ILDO)is presented in this paper.Firstly,a dynamic model of disturbance is built by augmenting the integral of the lumped disturbance as a state.Based on it,ILDO is designed by introducing iterative learning structures.Then,comparative analyses of ILDO and traditional disturbance observers are carried out in frequency domain.It demonstrates that ILDO combines the advantages of high accuracy in disturbance estimation and favorable robustness to measurement noise.After that,an ILDO based composite controller is designed to stabilize the spacecraft attitude.Finally,the effectiveness of the proposed control scheme is verified by simulations.
基金supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology Zhejiang University China(No.ICT1401)Shanghai Leading Academic Discipline Project(No.J50103)
文摘A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC)and the nonlinear disturbance observer(NDO).DSC technique provides the ability to overcome the″explosion of complexity″problem in backstepping control.NDO is adopted to observe the uncertainties in nonlinear flight dynamic system.It has been proved that the proposed design method can guarantee uniformly ultimately boundedness of all the signals in the closed-loop system by Lyapunov stability theorem.Finally,simulation results show that the proposed controller provides better performance than the traditional nonlinear controller.
文摘This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
基金Supported by the National Natural Science Foundation of China(10872029)
文摘To keep multiple missiles to fly in a formation, a robust controller for missile formation is designed. Based on the leader-follower formation mode, two formation relative motion models in different coordinate frames are established and compared. The three-dimension model built in a follower reference coordinate frame is chosen due to its control inputs decoupling, then this model is decoupled into three subsystems. For each subsystem a robust formation controller is proposed based on the disturbance observer and f'mite-time control theory when the external disturbance exits. The stability of the closed-loop system adopting the controller is proved theoretically. Simulation resuits show that the follower can foUow the leader and keep the desired formation despite the external disturbance, which validates the effectiveness of the proposed robust formation controller.
基金supported in part by the National Natural Science Foundation of China under Grant 51507188Doctoral Research Startup Foundation of Hubei University of Technology under Grant XJ2021000302。
文摘The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.
基金Project(51505474)supported by the National Natural Science Foundation of ChinaProject(2015XKMS020)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2016T90520)supported by the China Postdoctoral Science FoundationProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.
基金supported by the National Natural Science Foundation of China(61174102)the Jiangsu Natural Science Foundation of China(SBK20130033)+1 种基金the NUAA Fundamental Research Funds(NS2013028)the Specialized Research Fund for the Doctoral Program of Higher Education(20133218110013)
文摘The robust bounded flight control scheme is developed for the uncertain longitudinal flight dynamics of the fighter with control input saturation invoking the backstepping technique. To enhance the disturbance rejection ability of the robust flight control for fighters, the sliding mode disturbance observer is designed to estimate the compounded disturbance including the unknown external disturbance and the effect of the control input saturation. Based on the backstepping technique and the compounded disturbance estimated output, the robust bounded flight control scheme is proposed for the fighter with the unknown external disturbance and the control input saturation. The closed-loop system stability under the developed robust bounded flight control scheme is rigorously proved using the Lyapunov method and the uniformly asymptotical convergences of all closed-loop signals are guaranteed. Finally, simulation results are presented to show the effectiveness of the proposed robust bounded flight control scheme for the uncertain longitudinal flight dynamics of the fighter.
基金supported by the National Natural Science Foundation of China (No.60875039, 60774016, 60904022, 60805039)
文摘The objectives of this work are the development and design of disturbance observers (DO’s) for a team of agents that accomplish consensus on agents’ states in the presence of exogenous disturbances. A pinning control strategy is designed for a part of agents of the multiagent systems without disturbances, and this pinning control can bring multiple agents’ states to reaching an expected consensus value. Under the effect of the disturbances, nonlinear disturbance observers are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multiagent systems with disturbances under the composite controller can be achieved. Finally, by applying an example of multiagent systems with switching topologies and exogenous disturbances, the design of the parameters of DO’s are illuminated.
基金the National Natural Science Foundation of China(No.52175100)the Natural Science Foundation of Jiangsu Province(No.BK20201379)+2 种基金the 2020 Industrial Transformation and Upgrading Project of Industry and Information Technology Department of Jiangsu Province(No.JITC-2000AX0676-71)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY221076)the Scientific and Technological Achievements Transformation Project of Jiangsu Province(No.BA2020004)。
文摘Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.
基金This work was supported by the National Natural Science Foundation of China(11772185)the Natural Science Foundation of Heilongjiang Province(F2017005)the Fundamental Research Funds for the Central Universities(HEUCFP201770).
文摘To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based on the finite-time control strategy is developed to observe the time-varying external disturbance via estimating the upper bound of its first derivative.Meanwhile,the rotation matrix is employed to describe the attitude of SFF for the purpose of the avoidance of singularity and unwinding phenomenon.As for the attitude synchronization and the tracking control architecture,a sliding mode surface(SMS)is given such that the control objective can be achieved.The effectiveness and the validity of the proposed method are elaborated via theoretical analysis and numerical simulations.