Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal b...Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.展开更多
Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal...Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal relationship of macro-microscopic cumulative damage in anchoring structures as the main thread,revealing the mechanism of bearing capacity degradation and progressive instability of anchoring structure under cyclic impact.Firstly,a set of impact test devices and methods for the prestressed solid anchor bolt anchoring structure were developed,effectively replicating the cyclic impact stress paths in situ.Secondly,cyclic impact anchoring structure tests and simulations were conducted,which clarifies the damage evolution mechanism of the anchoring structure.Prestress loss follows a cubic decay func-tion as the number of impacts increases.Under the same impact energy and pretension force,the impact resistance cycles of extended anchoring and full-length anchoring were increased by 186.7%and 280%,respectively,compared to end anchoring.The rate of internal damage accumulation is positively corre-lated with impact energy and negatively correlated with anchorage length.Internal tensile cracks account for approximately 85%.Stress transmission follows a fluctuating pattern.Compared to the extended anchoring,the maximum vibration velocity of the exposed end particles in the full-length anchoring was reduced by 59.31%.Damage evolution exhibits a pronounced cumulative mutation effect.Then,a three-media,two-interface mechanical model of the anchoring structure was constructed.It has been clarified that the compressive stress,tensile stress,and oscillation effect arising from rapid transi-tions between compression and tension are the primary internal factors responsible for the degradation of the anchoring structure’s bearing capacity.Finally,the progressive instability mechanism of the anchoring structure under cyclic impact was elucidated.The mutual feedback and superposition of media rupture,interface debonding,and bearing capacity degradation result in overall failure.The failure pro-cess involves stages dominated by oscillation-compression,tensile stress,and compression failure.A tar-geted control strategy was further proposed.This provides a reference for maintaining the long-term stability of deep roadways under dynamic impact loads.展开更多
Sample plots were established in the principal forest types in the the Nevado de Toluca National Park, Mexico including those domi- nated by Pinus hartwegii, Abies religiosa, Quercus laurina and Alnus jorullensis. The...Sample plots were established in the principal forest types in the the Nevado de Toluca National Park, Mexico including those domi- nated by Pinus hartwegii, Abies religiosa, Quercus laurina and Alnus jorullensis. The vertical structure was defined by three strata in the coniferous forests and two strata in the broadleaved forests. Timber harvesting in Abies religiosa and Quercus laurina forests and fires generated by humans in Pinus hartwegii forests impeded the recruitment of saplings. Mature trees were also heavily impacted by logging in Pinus hartwegii forests. On the contrary, Alnusjorullensis forests were increas- ing due to the disturbance of Pinus and Quercus forests, as well aban- doned crop lands within the park. A combination of logging, uncon- trolled fire, and grazing appears to be compromising the recruitment of important tree species in this national park. These factors, together with human settlements, have also increased the proportion of early succes- sional species. Changes in forest structure from human disturbance indicate a need to control these activities if conservation goals are not to be compromised.展开更多
The general equations of secondary instability with respect to three-dimensional subharmonic disturbances are derived and applied to Blasius boundary layer in the present paper.The theoretical results of evolution and...The general equations of secondary instability with respect to three-dimensional subharmonic disturbances are derived and applied to Blasius boundary layer in the present paper.The theoretical results of evolution and spatial distribution of subharmonic disturbances are compared with experimental data.The re- suits show the important role of the process of route to transition in low-disturbance environments,and indi- cate that spatial mode is more rational than temporal mode.展开更多
The age structure of a Lurix gmelini population in the northern part of the Great Xingan mountains consists of one to several age waves. Three types (one-, two- and multi-generation populations) , plusing eleven subty...The age structure of a Lurix gmelini population in the northern part of the Great Xingan mountains consists of one to several age waves. Three types (one-, two- and multi-generation populations) , plusing eleven subtypes of age structure can be classified. As the basic unit of the age structure, age waves show an apparent β distribution in the range from 20 to 60 years. The interval between the starting points of two adjacent age waves is more than 100 years. Natural disturbances,especially forest fires that occurred in this area have had an important effect on the age structure. Most of the age waves resulted from forest fires, but the effect of windfall on the age structure also can be revealed through the analysis of young age waves. Generally, high intensity and low frequency fires are usually followed by one-generation populations, while low intensity and high frequency fires by two- or multi-generation populations.展开更多
Variable structure control (VSC) applied to atmospheric disturbance sup-pression is presented. The conditions are stipulated: the sliding mode existenee condi-tion, and invanance condition of atmospheric disturbanee i...Variable structure control (VSC) applied to atmospheric disturbance sup-pression is presented. The conditions are stipulated: the sliding mode existenee condi-tion, and invanance condition of atmospheric disturbanee in the variable structuresystem (VSS). A method of eigenstructure assignment technique for switching surfaeedesign is proposed. Based on different atmospheric disturbanee characteristics, such asrandom turbulence, discrete gust and wind shear, two kinds of control laws are derived that possess strong robustness. An example shows that this control approach isfeasible and effective.展开更多
Miombo woodlands near human settlements are under significant pressures from human activities,with negative consequences on their structure and composition.As studies are limited,we assessed the structure and species ...Miombo woodlands near human settlements are under significant pressures from human activities,with negative consequences on their structure and composition.As studies are limited,we assessed the structure and species composition of a portion of miombo woodland along an increasing disturbance gradient from a national park,through a buffer zone to communal lands in northeast Zimbabwe.Five concentric plots of 2 and 11 m radii were established in each area to record woody species composition,diameter,height,basal area,density and volume as well as evidence of disturbance.Effects of site,growth stage and their interaction on vegetation diversity and structural parameters were tested using a general linear model(GLM).Principal component analysis(PCA) tested the association between species and site and ANOVA the differences in the level of disturbance across strata.Species diversity did not differ between sites except for evenness,which increased with disturbance.Evenness and richness were greater in seedlings and saplings than mature trees across sites,respectively.Sapling and mature tree diameters differed significantly between sites.Volume and density of mature trees declined with increasing disturbance while seedling densities peaked at intermediate disturbance levels(buffer zone).Tree harvesting,was more evident in the buffer zone and in the communal area relative to the national park.In contrast,fire frequency was greater in the national park and in the buffer zone relative to the communal area.The results of this study identify a true miombo woodland dominated by Brachystegia boehmii with a stable population,as illustrated by an inverse-J shape in diameter class distribution on all sites,and that these woodlands are generally resilient to disturbances,maintaining similar species composition and structure at various levels of disturbance.However,continued monitoring of disturbance levels and miombo woodland response is recommended to ensure sustainable utilisation of these resources.展开更多
The cold and dry boreal forests of the Southwest Yukon are dominated by white spruce (Picea glauca), trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and the variability in structure and ...The cold and dry boreal forests of the Southwest Yukon are dominated by white spruce (Picea glauca), trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and the variability in structure and composition of stands depends on the favourability of disturbance, climate and site conditions for stimulating regeneration. In this study, we investigated relationships between stand structure and ecological, climatic and disturbance factors in the southwest Yukon. We found that white spruce dominates mature forests across the landscape, but it is regenerating proportionately less than trembling aspen. Nevertheless, regeneration of all the three species was abundant following any type or severity of disturbance. Height and diameter of both species varied with several environmental variables, particularly site physiography. Mixed stands of aspen and white spruce were more productive than pure stands of aspen or spruce. However, overall productivity in mixed stand decreased when density of aspen was more than 1000 stems/ ha. These results suggested that mixed stands of deciduous and coniferous species where appropriate should be promoted maintaining aspen density below 1000 stems/ha as the productivity declined beyond this threshold. Similarly, we suggest carrying out selection harvesting of co-dominant trees and regular thinning of intermediate trees to promote the height and diameter growth of the remaining trees.展开更多
1.General ReviewThe rapid development of extra high voltage transmissionlines and power systems raised serious stability problems.Becauseof the long distance transmission of power and relative weak systemconfiguration...1.General ReviewThe rapid development of extra high voltage transmissionlines and power systems raised serious stability problems.Becauseof the long distance transmission of power and relative weak systemconfiguration,stability became the most important and seriousproblems.The risks in terms of disturbance causing subsequentsystem instability could be very high and the results of frequency andvoltage collapse may cause catastrophic results.展开更多
Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological metho...Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.展开更多
The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A ser...The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A series of laboratory tests,numerical simulations and theoretical analyses were carried out in this study to disclose the sliding mechanism of roof rock blocks under lateral disturbance.Firstly,the experiments on trapezoidal key block under various clamping loads and disturbance were conducted,followed by numerical simulations using the fast Lagrangian analysis of continua(FLAC3D).Then,based on the conventional wave propagation model and the classical shear-slip constitutive model,a theoretical model was proposed to capture the relative displacement between blocks and the sliding displacement of the key block.The results indicate that the sliding displacement of the key block increased linearly with the disturbance energy and decreased exponentially with the clamping load when the key block was disturbed to slide(without instability).Meanwhile,when the key block was disturbed to fall,two types of instability process may appear as immediate type or delayed type.In addition,the propagation of stress waves in the block system exhibited obvious low-velocity and lowfrequency characteristics,resulting in the friction reduction effect appearing at the contact interface,which is the essential reason for the sliding of rock blocks.The results can be applied to practical underground engineering and provide valuable guidance for the early detection and prevention of rockfalling disasters.展开更多
Some new results on the evolution of finite-amplitude disturbances to the nonlinearly stable and unstable quasigeostrophic flows are presented. Both barotropic and multilayer baroclinic problems are investigated. The ...Some new results on the evolution of finite-amplitude disturbances to the nonlinearly stable and unstable quasigeostrophic flows are presented. Both barotropic and multilayer baroclinic problems are investigated. The upper (lower) bounds on the energy and potential enstrophy of disturbances to the nonlinearly stable(unstable) basic flows are established.展开更多
The bending creep and its disturbance effects of red sandstone rock beam and oil shale rock beam were studied by adopting the self-developed gravitation level style rock creep test machine and bending creep test syste...The bending creep and its disturbance effects of red sandstone rock beam and oil shale rock beam were studied by adopting the self-developed gravitation level style rock creep test machine and bending creep test system,and the constitutive equations were established.It is found that fracture morphology of rock beams under no disturbance load is regular,cracking position of fractures is on part of loading concentration,the crack starts from a neutral plane.However,fracture morphology of rock beams under disturbance load is irregular,cracking position of fractures deviates from a neutral plane.Delayed instability of rock beam occurs for some time under constant disturbance load.When disturbance load is beyond a certain range,suddenly instability of occurs rock beam in a certain time.The results show that there is a guiding significance for creep stability in the geotechnical engineering fields.展开更多
By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal lin...By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal line-like disturbance moving at any angle with respect to basic flow, arriving at the following results: (1) with linear shear available, the heterotropic instability of the disturbance will occur only when flow shearing happens in the direction of the line-like disturbance movement or in the direction perpendicular to the disturbance movement, with the heterotropic instability showing the instability of the internal inertial gravity wave; (2) in the presence of second-order non-linear shear, the disturbance of the heterotropic instability includes internal inertial gravity and vortex Rossby waves. For the zonal line-form disturbance under study, the vortex Rossby wave has its source in the second-order shear of meridional basic wind speed in the flow and propagates unidirectionally with respect to the meridional basic flow. As a mesoscale heterotropic instable disturbance, the vortex Rossby wave has its origin from the second shear of the flow in the direction perpendicular to the line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line-like disturbances, if the second-order shear happens in the meridional wind speed, i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the heterotropic instability of the disturbance is likely to be the instability of a mixed Rossby-internal inertial gravity wave; (4) the symmetric instability is actually the instability of the internal inertial gravity wave. The second-order shear in the flow represents an instable factor for a symmetric-type disturbance; (5) the instability of a traversal-type disturbance is the instability of the internal inertial gravity wave when the basic flow is constant or only linearly sheared. With a second or nonlinear vertical shear of the basic flow taken into account, the instability of a traversal-type disturbance may be the instability of a mixed vortex Rossby - gravity wave.展开更多
The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to...The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to simulate the failure process of an underground cavern,which provided insights into the failure mechanism of deep hard rock affected by factors such as the dynamic stress-wave amplitudes,disturbance direction,and dip angles of the structural plane.The crack-propagation process,stress-field distribution,displacement,velocity of failed rock,and failure zone around the circular cavern were analyzed to identify the dynamic response and failure properties of the underground structures.The simulation results indicate that the dynamic disturbance direction had less influence on the dynamic response for the constant in situ stress state,while the failure intensity and damage range around the cavern always exhibited a monotonically increasing trend with an increase in the dynamic load.The crack distribution around the circular cavern exhibited an asymmetric pattern,possibly owing to the stress-wave reflection behavior and attenuation effect along the propagation route.Geological discontinuities significantly affected the stability of nearby caverns subjected to dynamic disturbances,during which the failure intensity exhibited the pattern of an initial increase followed by a decrease with an increase in the dip angle of the structural plane.Additionally,the dynamic disturbance direction led to variations in the crack distribution for specific structural planes and stress states.These results indicate that the failure behavior should be the integrated response of the excavation unloading effect,geological conditions,and external dynamic disturbances.展开更多
Small mammals have been proposed playing an important role in the energy flow and regeneration of forest ecosystems. We compared species richness, diversity (H’) of small mammal communities and abundance of six domin...Small mammals have been proposed playing an important role in the energy flow and regeneration of forest ecosystems. We compared species richness, diversity (H’) of small mammal communities and abundance of six dominant species of small mammals in disturbed and protected forests (four age classes: 6 - 10, 11 - 15, 16 - 20 and 31 - 40 years old) in China. We also investigated the structural variables (such as species richness, cover rate and abundance of shrubs and grasses) in the bottom layer, which considered to be important for small mammals and might be altered by human disturbance. The relationships between small mammals and these structural variables were examined to determine the potential effects of human disturbance on the small mammals in the restored forests. Our results indicated that the structure and composition of the vegetation in the bottom layer were simplified by human disturbance, while the abundance and cover rate of grasses were significantly increased. Although no significant differences were observed in species richness of small mammals between the protected and disturbed forests at the same age, the diversity index of small mammals in the protected forests was always significantly higher than in the disturbed forests. Regression showed that the species richness and diversity of small mammals increased with the species richness of shrubs, and was negatively correlated to the cover rate of grasses in the bottom layer. Human disturbance increased the total abundance of small mammals, and the increased cover rate of grasses in the bottom layer was beneficial to the abundance of small mammals. Obvious succession of small mammal communities occurred as the protected forest aged. In the protected forests, small ground-dwelling mammals (A. chevrieri, E. miletus and M. pahari) were the dominant species in the younger forests. Other mammals (T. belangeri, D. pernyi and C. erythraeus) gradually became the dominant species as the protected forests aged. However, in the disturbed forests, the smaller ground-dwelling mammals (T. belangeri, D. pernyi and C. erythraeus) were always the dominant species at all ages of the disturbed forests. Regression indicated that the cover rate of grasses in the bottom layer was beneficial to the three smaller body size and ground-dwelling small mammal species, while the shrubs were beneficial to the three bigger body size mammal species.展开更多
The non-cascade permanent magnet synchronous motor control system has the advantages of simple structure and less adjustable parameters,but the non-cascade structure needs to solve the problem of over-current protecti...The non-cascade permanent magnet synchronous motor control system has the advantages of simple structure and less adjustable parameters,but the non-cascade structure needs to solve the problem of over-current protection.In this paper,a current constrained control method is used to limit the starting current to a safe range.At the same time,to ensure the robustness and rapidity of the system,a super twist current constraint controller(CCSTA)is generated by combining super twist algorithm(STA)with current constraint control;Considering the diversity of internal and external disturbances,a functional disturbance observer(FDOB)is proposed to compensate the matched and unmatched disturbances,which further improves the robustness of the system.展开更多
Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has ...Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has led to the development of large wind turbines, which result in increased structural loads, therefore, increasing the possibility of early failure due to fatigue load. This paper proposes a proportional integral observer (PI-Observer) based disturbance accommodation controller (DAC) with individual pitch control (IPC) for load mitigation to reduce components’ damage and ensure the wind turbine is operational for the expected lifetime. The results indicate a reduction in blades’ bending moments with a standard deviation of 15.9%, which positively impacts several other wind turbine subsystems. Therefore, the lifetime control strategy demonstrates effective structural load mitigation without compromise on power generation, thus, achieving a nominal lifetime control to inhibit premature failure.展开更多
Aim Due to the important role of lianas in the functioning of forest ecosystem,knowledge of the factors that affect them are important in the management of forests.Currently,there are conflicting reports on the respon...Aim Due to the important role of lianas in the functioning of forest ecosystem,knowledge of the factors that affect them are important in the management of forests.Currently,there are conflicting reports on the response of liana communities to disturbance,calling for more research in the area.The present study was carried out to investigate the response of liana diversity and structure to human disturbance within two major forests in the Penang National Park,Malaysia.The study also looked at the implication of the findings for conservation.Methods A total of 15 40×40-m^(2)(or 40-m×40-m)plots each were randomly located across a range of habitats in a primary forest and disturbed secondary forest.Trees with diameter at breast height≥10 cm were examined for lianas with diameter≥2 cm.Both lianas and trees were enumerated and compared between the two forests.Diversity and structural variables of lianas were compared between the two forests using the t-test analysis.Tree abundance was also compared between the two forests with t-test,while linear regression analysis was run to determine the effects of tree abundance on liana abundance.Important Findings A total of 46 liana species belonging to 27 genera and 15 families were identified in the study.Human disturbance significantly reduced liana species richness and species diversity in the secondary forest.Liana abundance remained the same in both forests whereas liana basal area was;7 times higher in the primary forest.Twiners and hook climbers were significantly more abundant in the primary and secondary forest,respectively.Large diameter lianas were more abundant in the primary forest compared with the secondary forest.The diameter distribution of most families in the primary forest followed the inverted J-shaped curve whereas only a few of the families in the secondary forest did so.Tree abundance was significantly higher in the primary forest.The abundance of lianas significantly depended on tree abundance in all the forests.The study has provided evidence of negative effects of human disturbance on liana diversity and structure that does not auger well for biodiversity in the forest.In view of the critical role of lianas in maintaining biodiversity in the forest ecosystem,lianas in the national park should be protected from further exploitation.展开更多
基金supported by grants from Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA22096018(to JY)Guangxi Key Research and Development Program,No.AB22080053(to DD)+6 种基金Major Project of Science and Technology of Guangxi Zhuang Autonomous Region,No.Guike-AA23023004(to MZ)the National Natural Science Foundation of China,Nos.82260021(to MZ),82060315(to DD)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2021GXNSFBA220007(to GD)Clinical Research Center For Medical Imaging in Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection in Hunan Province,No.2020SK3006(to JL)Science and Technology Innovation Program of Hunan Province,No.2021RC4016(to JL)Key Project of the Natural Science Foundation of Hunan Province,No.2024JJ3041(to JL).
文摘Sleep disturbances are among the most prevalent neuropsychiatric symptoms in individuals who have recovered from severe acute respiratory syndrome coronavirus 2 infections.Previous studies have demonstrated abnormal brain structures in patients with sleep disturbances who have recovered from coronavirus disease 2019(COVID-19).However,neuroimaging studies on sleep disturbances caused by COVID-19 are scarce,and existing studies have primarily focused on the long-term effects of the virus,with minimal acute phase data.As a result,little is known about the pathophysiology of sleep disturbances in the acute phase of COVID-19.To address this issue,we designed a longitudinal study to investigate whether alterations in brain structure occur during the acute phase of infection,and verified the results using 3-month follow-up data.A total of 26 COVID-19 patients with sleep disturbances(aged 51.5±13.57 years,8 women and 18 men),27 COVID-19 patients without sleep disturbances(aged 47.33±15.98 years,9 women and 18 men),and 31 age-and gender-matched healthy controls(aged 49.19±17.51 years,9 women and 22 men)were included in this study.Eleven COVID-19 patients with sleep disturbances were included in a longitudinal analysis.We found that COVID-19 patients with sleep disturbances exhibited brain structural changes in almost all brain lobes.The cortical thicknesses of the left pars opercularis and left precuneus were significantly negatively correlated with Pittsburgh Sleep Quality Index scores.Additionally,we observed changes in the volume of the hippocampus and its subfield regions in COVID-19 patients compared with the healthy controls.The 3-month follow-up data revealed indices of altered cerebral structure(cortical thickness,cortical grey matter volume,and cortical surface area)in the frontal-parietal cortex compared with the baseline in COVID-19 patients with sleep disturbances.Our findings indicate that the sleep disturbances patients had altered morphology in the cortical and hippocampal structures during the acute phase of infection and persistent changes in cortical regions at 3 months post-infection.These data improve our understanding of the pathophysiology of sleep disturbances caused by COVID-19.
基金supported by National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.52074263,52274145 and 52034007)+1 种基金the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation(No.GZC20241925)the Fundamental Research Funds for the Central Universities(No.2024QN11002).
文摘Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal relationship of macro-microscopic cumulative damage in anchoring structures as the main thread,revealing the mechanism of bearing capacity degradation and progressive instability of anchoring structure under cyclic impact.Firstly,a set of impact test devices and methods for the prestressed solid anchor bolt anchoring structure were developed,effectively replicating the cyclic impact stress paths in situ.Secondly,cyclic impact anchoring structure tests and simulations were conducted,which clarifies the damage evolution mechanism of the anchoring structure.Prestress loss follows a cubic decay func-tion as the number of impacts increases.Under the same impact energy and pretension force,the impact resistance cycles of extended anchoring and full-length anchoring were increased by 186.7%and 280%,respectively,compared to end anchoring.The rate of internal damage accumulation is positively corre-lated with impact energy and negatively correlated with anchorage length.Internal tensile cracks account for approximately 85%.Stress transmission follows a fluctuating pattern.Compared to the extended anchoring,the maximum vibration velocity of the exposed end particles in the full-length anchoring was reduced by 59.31%.Damage evolution exhibits a pronounced cumulative mutation effect.Then,a three-media,two-interface mechanical model of the anchoring structure was constructed.It has been clarified that the compressive stress,tensile stress,and oscillation effect arising from rapid transi-tions between compression and tension are the primary internal factors responsible for the degradation of the anchoring structure’s bearing capacity.Finally,the progressive instability mechanism of the anchoring structure under cyclic impact was elucidated.The mutual feedback and superposition of media rupture,interface debonding,and bearing capacity degradation result in overall failure.The failure pro-cess involves stages dominated by oscillation-compression,tensile stress,and compression failure.A tar-geted control strategy was further proposed.This provides a reference for maintaining the long-term stability of deep roadways under dynamic impact loads.
文摘Sample plots were established in the principal forest types in the the Nevado de Toluca National Park, Mexico including those domi- nated by Pinus hartwegii, Abies religiosa, Quercus laurina and Alnus jorullensis. The vertical structure was defined by three strata in the coniferous forests and two strata in the broadleaved forests. Timber harvesting in Abies religiosa and Quercus laurina forests and fires generated by humans in Pinus hartwegii forests impeded the recruitment of saplings. Mature trees were also heavily impacted by logging in Pinus hartwegii forests. On the contrary, Alnusjorullensis forests were increas- ing due to the disturbance of Pinus and Quercus forests, as well aban- doned crop lands within the park. A combination of logging, uncon- trolled fire, and grazing appears to be compromising the recruitment of important tree species in this national park. These factors, together with human settlements, have also increased the proportion of early succes- sional species. Changes in forest structure from human disturbance indicate a need to control these activities if conservation goals are not to be compromised.
基金Project supported by the National Natural Science Foundation of China
文摘The general equations of secondary instability with respect to three-dimensional subharmonic disturbances are derived and applied to Blasius boundary layer in the present paper.The theoretical results of evolution and spatial distribution of subharmonic disturbances are compared with experimental data.The re- suits show the important role of the process of route to transition in low-disturbance environments,and indi- cate that spatial mode is more rational than temporal mode.
基金This project was supported by the National Natural Science Foundation of China
文摘The age structure of a Lurix gmelini population in the northern part of the Great Xingan mountains consists of one to several age waves. Three types (one-, two- and multi-generation populations) , plusing eleven subtypes of age structure can be classified. As the basic unit of the age structure, age waves show an apparent β distribution in the range from 20 to 60 years. The interval between the starting points of two adjacent age waves is more than 100 years. Natural disturbances,especially forest fires that occurred in this area have had an important effect on the age structure. Most of the age waves resulted from forest fires, but the effect of windfall on the age structure also can be revealed through the analysis of young age waves. Generally, high intensity and low frequency fires are usually followed by one-generation populations, while low intensity and high frequency fires by two- or multi-generation populations.
文摘Variable structure control (VSC) applied to atmospheric disturbance sup-pression is presented. The conditions are stipulated: the sliding mode existenee condi-tion, and invanance condition of atmospheric disturbanee in the variable structuresystem (VSS). A method of eigenstructure assignment technique for switching surfaeedesign is proposed. Based on different atmospheric disturbanee characteristics, such asrandom turbulence, discrete gust and wind shear, two kinds of control laws are derived that possess strong robustness. An example shows that this control approach isfeasible and effective.
文摘Miombo woodlands near human settlements are under significant pressures from human activities,with negative consequences on their structure and composition.As studies are limited,we assessed the structure and species composition of a portion of miombo woodland along an increasing disturbance gradient from a national park,through a buffer zone to communal lands in northeast Zimbabwe.Five concentric plots of 2 and 11 m radii were established in each area to record woody species composition,diameter,height,basal area,density and volume as well as evidence of disturbance.Effects of site,growth stage and their interaction on vegetation diversity and structural parameters were tested using a general linear model(GLM).Principal component analysis(PCA) tested the association between species and site and ANOVA the differences in the level of disturbance across strata.Species diversity did not differ between sites except for evenness,which increased with disturbance.Evenness and richness were greater in seedlings and saplings than mature trees across sites,respectively.Sapling and mature tree diameters differed significantly between sites.Volume and density of mature trees declined with increasing disturbance while seedling densities peaked at intermediate disturbance levels(buffer zone).Tree harvesting,was more evident in the buffer zone and in the communal area relative to the national park.In contrast,fire frequency was greater in the national park and in the buffer zone relative to the communal area.The results of this study identify a true miombo woodland dominated by Brachystegia boehmii with a stable population,as illustrated by an inverse-J shape in diameter class distribution on all sites,and that these woodlands are generally resilient to disturbances,maintaining similar species composition and structure at various levels of disturbance.However,continued monitoring of disturbance levels and miombo woodland response is recommended to ensure sustainable utilisation of these resources.
文摘The cold and dry boreal forests of the Southwest Yukon are dominated by white spruce (Picea glauca), trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and the variability in structure and composition of stands depends on the favourability of disturbance, climate and site conditions for stimulating regeneration. In this study, we investigated relationships between stand structure and ecological, climatic and disturbance factors in the southwest Yukon. We found that white spruce dominates mature forests across the landscape, but it is regenerating proportionately less than trembling aspen. Nevertheless, regeneration of all the three species was abundant following any type or severity of disturbance. Height and diameter of both species varied with several environmental variables, particularly site physiography. Mixed stands of aspen and white spruce were more productive than pure stands of aspen or spruce. However, overall productivity in mixed stand decreased when density of aspen was more than 1000 stems/ ha. These results suggested that mixed stands of deciduous and coniferous species where appropriate should be promoted maintaining aspen density below 1000 stems/ha as the productivity declined beyond this threshold. Similarly, we suggest carrying out selection harvesting of co-dominant trees and regular thinning of intermediate trees to promote the height and diameter growth of the remaining trees.
文摘1.General ReviewThe rapid development of extra high voltage transmissionlines and power systems raised serious stability problems.Becauseof the long distance transmission of power and relative weak systemconfiguration,stability became the most important and seriousproblems.The risks in terms of disturbance causing subsequentsystem instability could be very high and the results of frequency andvoltage collapse may cause catastrophic results.
基金support by Melbourne International Research Scholarship (MIRS)。
文摘Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.
基金This work was financially supported by National Key Research and Development Program of China(Grant No.2022YFC2903903)National Natural Science Foundation of China(Grant No.52304132)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050014).These support is gratefully acknowledged.
文摘The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A series of laboratory tests,numerical simulations and theoretical analyses were carried out in this study to disclose the sliding mechanism of roof rock blocks under lateral disturbance.Firstly,the experiments on trapezoidal key block under various clamping loads and disturbance were conducted,followed by numerical simulations using the fast Lagrangian analysis of continua(FLAC3D).Then,based on the conventional wave propagation model and the classical shear-slip constitutive model,a theoretical model was proposed to capture the relative displacement between blocks and the sliding displacement of the key block.The results indicate that the sliding displacement of the key block increased linearly with the disturbance energy and decreased exponentially with the clamping load when the key block was disturbed to slide(without instability).Meanwhile,when the key block was disturbed to fall,two types of instability process may appear as immediate type or delayed type.In addition,the propagation of stress waves in the block system exhibited obvious low-velocity and lowfrequency characteristics,resulting in the friction reduction effect appearing at the contact interface,which is the essential reason for the sliding of rock blocks.The results can be applied to practical underground engineering and provide valuable guidance for the early detection and prevention of rockfalling disasters.
文摘Some new results on the evolution of finite-amplitude disturbances to the nonlinearly stable and unstable quasigeostrophic flows are presented. Both barotropic and multilayer baroclinic problems are investigated. The upper (lower) bounds on the energy and potential enstrophy of disturbances to the nonlinearly stable(unstable) basic flows are established.
基金Projects(50474029,50174035) supported by the National Natural Science Foundation of China
文摘The bending creep and its disturbance effects of red sandstone rock beam and oil shale rock beam were studied by adopting the self-developed gravitation level style rock creep test machine and bending creep test system,and the constitutive equations were established.It is found that fracture morphology of rock beams under no disturbance load is regular,cracking position of fractures is on part of loading concentration,the crack starts from a neutral plane.However,fracture morphology of rock beams under disturbance load is irregular,cracking position of fractures deviates from a neutral plane.Delayed instability of rock beam occurs for some time under constant disturbance load.When disturbance load is beyond a certain range,suddenly instability of occurs rock beam in a certain time.The results show that there is a guiding significance for creep stability in the geotechnical engineering fields.
基金This work was sponsored jointly by the National Key Basic Research and Development Project of China(Grant No.2004CB418301)the National Natural Science Foundation of China(Grant No.40433007)the Jiangsu Province Natural Science Foundation of China(Grant No.BK2005141).
文摘By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal line-like disturbance moving at any angle with respect to basic flow, arriving at the following results: (1) with linear shear available, the heterotropic instability of the disturbance will occur only when flow shearing happens in the direction of the line-like disturbance movement or in the direction perpendicular to the disturbance movement, with the heterotropic instability showing the instability of the internal inertial gravity wave; (2) in the presence of second-order non-linear shear, the disturbance of the heterotropic instability includes internal inertial gravity and vortex Rossby waves. For the zonal line-form disturbance under study, the vortex Rossby wave has its source in the second-order shear of meridional basic wind speed in the flow and propagates unidirectionally with respect to the meridional basic flow. As a mesoscale heterotropic instable disturbance, the vortex Rossby wave has its origin from the second shear of the flow in the direction perpendicular to the line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line-like disturbances, if the second-order shear happens in the meridional wind speed, i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the heterotropic instability of the disturbance is likely to be the instability of a mixed Rossby-internal inertial gravity wave; (4) the symmetric instability is actually the instability of the internal inertial gravity wave. The second-order shear in the flow represents an instable factor for a symmetric-type disturbance; (5) the instability of a traversal-type disturbance is the instability of the internal inertial gravity wave when the basic flow is constant or only linearly sheared. With a second or nonlinear vertical shear of the basic flow taken into account, the instability of a traversal-type disturbance may be the instability of a mixed vortex Rossby - gravity wave.
基金The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China(Grant Nos.52004143,51774194)the Open fund for State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,the China Postdoctoral Science Foundation(No.2020M670781)the NSFC-Shandong Joint fund(Grant No.U1806208).
文摘The occurrence of disasters in deep mining engineering has been confirmed to be closely related to the external dynamic disturbances and geological discontinuities.Thus,a combined finite-element method was employed to simulate the failure process of an underground cavern,which provided insights into the failure mechanism of deep hard rock affected by factors such as the dynamic stress-wave amplitudes,disturbance direction,and dip angles of the structural plane.The crack-propagation process,stress-field distribution,displacement,velocity of failed rock,and failure zone around the circular cavern were analyzed to identify the dynamic response and failure properties of the underground structures.The simulation results indicate that the dynamic disturbance direction had less influence on the dynamic response for the constant in situ stress state,while the failure intensity and damage range around the cavern always exhibited a monotonically increasing trend with an increase in the dynamic load.The crack distribution around the circular cavern exhibited an asymmetric pattern,possibly owing to the stress-wave reflection behavior and attenuation effect along the propagation route.Geological discontinuities significantly affected the stability of nearby caverns subjected to dynamic disturbances,during which the failure intensity exhibited the pattern of an initial increase followed by a decrease with an increase in the dip angle of the structural plane.Additionally,the dynamic disturbance direction led to variations in the crack distribution for specific structural planes and stress states.These results indicate that the failure behavior should be the integrated response of the excavation unloading effect,geological conditions,and external dynamic disturbances.
文摘Small mammals have been proposed playing an important role in the energy flow and regeneration of forest ecosystems. We compared species richness, diversity (H’) of small mammal communities and abundance of six dominant species of small mammals in disturbed and protected forests (four age classes: 6 - 10, 11 - 15, 16 - 20 and 31 - 40 years old) in China. We also investigated the structural variables (such as species richness, cover rate and abundance of shrubs and grasses) in the bottom layer, which considered to be important for small mammals and might be altered by human disturbance. The relationships between small mammals and these structural variables were examined to determine the potential effects of human disturbance on the small mammals in the restored forests. Our results indicated that the structure and composition of the vegetation in the bottom layer were simplified by human disturbance, while the abundance and cover rate of grasses were significantly increased. Although no significant differences were observed in species richness of small mammals between the protected and disturbed forests at the same age, the diversity index of small mammals in the protected forests was always significantly higher than in the disturbed forests. Regression showed that the species richness and diversity of small mammals increased with the species richness of shrubs, and was negatively correlated to the cover rate of grasses in the bottom layer. Human disturbance increased the total abundance of small mammals, and the increased cover rate of grasses in the bottom layer was beneficial to the abundance of small mammals. Obvious succession of small mammal communities occurred as the protected forest aged. In the protected forests, small ground-dwelling mammals (A. chevrieri, E. miletus and M. pahari) were the dominant species in the younger forests. Other mammals (T. belangeri, D. pernyi and C. erythraeus) gradually became the dominant species as the protected forests aged. However, in the disturbed forests, the smaller ground-dwelling mammals (T. belangeri, D. pernyi and C. erythraeus) were always the dominant species at all ages of the disturbed forests. Regression indicated that the cover rate of grasses in the bottom layer was beneficial to the three smaller body size and ground-dwelling small mammal species, while the shrubs were beneficial to the three bigger body size mammal species.
基金This work was supported by the National Natural Science Foundation of China under Grant 61863023.
文摘The non-cascade permanent magnet synchronous motor control system has the advantages of simple structure and less adjustable parameters,but the non-cascade structure needs to solve the problem of over-current protection.In this paper,a current constrained control method is used to limit the starting current to a safe range.At the same time,to ensure the robustness and rapidity of the system,a super twist current constraint controller(CCSTA)is generated by combining super twist algorithm(STA)with current constraint control;Considering the diversity of internal and external disturbances,a functional disturbance observer(FDOB)is proposed to compensate the matched and unmatched disturbances,which further improves the robustness of the system.
文摘Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has led to the development of large wind turbines, which result in increased structural loads, therefore, increasing the possibility of early failure due to fatigue load. This paper proposes a proportional integral observer (PI-Observer) based disturbance accommodation controller (DAC) with individual pitch control (IPC) for load mitigation to reduce components’ damage and ensure the wind turbine is operational for the expected lifetime. The results indicate a reduction in blades’ bending moments with a standard deviation of 15.9%, which positively impacts several other wind turbine subsystems. Therefore, the lifetime control strategy demonstrates effective structural load mitigation without compromise on power generation, thus, achieving a nominal lifetime control to inhibit premature failure.
基金TWAS-USM Postgraduate Fellowship and Research University Grant(RU)(1001/PBIOLOGI/815046).
文摘Aim Due to the important role of lianas in the functioning of forest ecosystem,knowledge of the factors that affect them are important in the management of forests.Currently,there are conflicting reports on the response of liana communities to disturbance,calling for more research in the area.The present study was carried out to investigate the response of liana diversity and structure to human disturbance within two major forests in the Penang National Park,Malaysia.The study also looked at the implication of the findings for conservation.Methods A total of 15 40×40-m^(2)(or 40-m×40-m)plots each were randomly located across a range of habitats in a primary forest and disturbed secondary forest.Trees with diameter at breast height≥10 cm were examined for lianas with diameter≥2 cm.Both lianas and trees were enumerated and compared between the two forests.Diversity and structural variables of lianas were compared between the two forests using the t-test analysis.Tree abundance was also compared between the two forests with t-test,while linear regression analysis was run to determine the effects of tree abundance on liana abundance.Important Findings A total of 46 liana species belonging to 27 genera and 15 families were identified in the study.Human disturbance significantly reduced liana species richness and species diversity in the secondary forest.Liana abundance remained the same in both forests whereas liana basal area was;7 times higher in the primary forest.Twiners and hook climbers were significantly more abundant in the primary and secondary forest,respectively.Large diameter lianas were more abundant in the primary forest compared with the secondary forest.The diameter distribution of most families in the primary forest followed the inverted J-shaped curve whereas only a few of the families in the secondary forest did so.Tree abundance was significantly higher in the primary forest.The abundance of lianas significantly depended on tree abundance in all the forests.The study has provided evidence of negative effects of human disturbance on liana diversity and structure that does not auger well for biodiversity in the forest.In view of the critical role of lianas in maintaining biodiversity in the forest ecosystem,lianas in the national park should be protected from further exploitation.