期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
A Self-Healing and Nonflammable Cross-Linked Network Polymer Electrolyte with the Combination of Hydrogen Bonds and Dynamic Disulfide Bonds for Lithium Metal Batteries
1
作者 Kai Chen Yuxue Sun +2 位作者 Xiaorong Zhang Jun Liu Haiming Xie 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期106-113,共8页
The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycli... The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP. 展开更多
关键词 cross-linked network dynamic disulfide bonds lithium-ion batteries NONFLAMMABLE self-healing solid polymer electrolytes
下载PDF
Improving the Heat Resistance ofβ-1,4 Glucanase by Introducing Disulfide Bonds
2
作者 Guodong WANG Junqing WANG 《Agricultural Biotechnology》 CAS 2023年第2期32-37,共6页
Each possible pair of residues inβ-1,4 glucanase for disulfide formation was assessed using online websites,and four pairs L28C-S256C,Q41C-P278C,S122C-N163C and A184C-A215C were selected.Accordingly,four recombinant ... Each possible pair of residues inβ-1,4 glucanase for disulfide formation was assessed using online websites,and four pairs L28C-S256C,Q41C-P278C,S122C-N163C and A184C-A215C were selected.Accordingly,four recombinant plasmids pET28a(+)EccslH28,pET28a(+)EccslH41,pET28a(+)EccslH122 and pET28a(+)EccslH184 were prepared and transformed into E.coli to express the recombinant enzymes.Then analysis on enzymatic properties showed that T50 of the recombinant enzymes was increased from 10 min for EccslHt2 to 90 min for EccslH28 and 40 min for EccslH41 at 70℃,while their optimum pH value and pH stability were not affected,which proved that the introduction of disulfide bond improved the thermal stability ofβ-1,4 glucanase. 展开更多
关键词 β-1 4-Glucanase disulfide bond Thermal stability Plasmid construction
下载PDF
A Robust Self-healing Polyurethane Elastomer Enabled by Tuning the Molecular Mobility and Phase Morphology through Disulfide Bonds 被引量:3
3
作者 Hai-Tao Wu Bi-Qiang Jin +8 位作者 Hao Wang Wen-Qiang Wu Zhen-Xing Cao Zhao-Yang Yuan Yue Huang Wei-Hang Li Guang-Su Huang Lu-Sheng Liao Jin-Rong Wu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第10期1299-1309,I0007,共12页
Elastomers with outstanding strength,toughness and healing efficiency are highly promising for many emerging fields.However,it is still a challenge to integrate all these beneficial features in one elastomer.Herein,an... Elastomers with outstanding strength,toughness and healing efficiency are highly promising for many emerging fields.However,it is still a challenge to integrate all these beneficial features in one elastomer.Herein,an asymmetric alicyclic structure adjacent to aromatic disulfide was tactfully introduced into the backbone of polyurethane(PU)elastomer.Specifically,such elastomer(PU-HPS)was fabricated by polycondensing polytetramethylene ether glycol(PTMEG),isophorone diisocyanate(IPDI)and p-hydroxydiphenyl disulfide(HPS)via one-pot method.The molecular mobility and phase morphology of PU-HPS can be tuned by adjusting the HPS content.Consequently,the dynamic exchange of hydrogen and disulfide bonds in the hard segment domains can also be tailored.The optimized sample manifests outstanding tensile strength(46.4 MPa),high toughness(109.1 MJ/m^(3)),high self-healing efficiency after fracture(90.3%),complete scratch recovery(100%)and good puncture resistance.Therefore,this work provides a facile strategy for developing robust self-healing polymers. 展开更多
关键词 SELF-HEALING POLYURETHANE disulfide bonds Chain mobility Phase morphology
原文传递
Ultrathin organic polymer with p-πconjugated structure for simultaneous photocatalytic disulfide bond generation and CO_(2)reduction
4
作者 Linquan Hou Zhunyun Tang +6 位作者 Guojiang Mao Shiheng Yin Bei Long Tao Ouyang Guo-Jun Deng Atif Ali Ting Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期639-647,I0016,共10页
Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin ... Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin organic polymer with p-πconjugated structure(TPP)was rationally designed and prepared,and showed a high yield of CO(15.2 mmol g^(-1))and conversion of SAS coupled products(100%),far exceeding the organic polymer with P=O structure.The enhanced photoredox activity of TPP is ascribed to the orbital interaction between the p-orbital on phosphorus and theπ-orbitals of aromatic,which can accelerate the photoinduced charge carrier separation and improve the CO_(2)adsorption capacity.TPP can also be used for the dehydrocoupling of various benzyl mercaptans to the corresponding SAS bond products.This work provides a new concept for the efficient synthesis of disulfide bonds combined with CO_(2)reduction in a photoreaction system. 展开更多
关键词 Photocatalytic coupled reaction disulfide bond CO_(2)reduction High activity Organic polymer
下载PDF
Fine-tuning the activation behaviors of ternary modular cabazitaxel prodrugs for efficient and on-target oral anti-cancer therapy
5
作者 Mingyang Zhang Yifan Miao +7 位作者 Can Zhao Tong Liu Xiyan Wang Zixuan Wang Wenxin Zhong Zhonggui He Chutong Tian Jin Sun 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期188-203,共16页
The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of ... The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy. 展开更多
关键词 Steric disulfide bond Triglyceride-like pr odrugs CABAZITAXEL Lymphatic transport Oral chemotherapy
下载PDF
Oxidation-strengthened disulfide-bridged prodrug nanoplatforms with cascade facilitated drug release for synergetic photochemotherapy 被引量:2
6
作者 Bin Yang Lin Wei +13 位作者 Yuequan Wang Na Li Bin Ji Kaiyuan Wang Xuanbo Zhang Shenwu Zhang Shuang Zhou Xiaohui Yao Hang Song Yusheng Wu Haotian Zhang Qiming Kan Tao Jin Jin Sun 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2020年第5期637-645,共9页
One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed... One of the major barriers in utilizing prodrug nanocarriers for cancer therapy is the slow release of parent drug in tumors.Tumor cells generally display the higher oxidative level than normal cells,and also displayed the heterogeneity in terms of redox homeostasis level.We previously found that the disulfide bond-linkage demonstrates surprising oxidationsensitivity to form the hydrophilic sulfoxide and sulphone groups.Herein,we develop oxidation-strengthened prodrug nanosystem loaded with pyropheophorbide a(PPa)to achieve light-activatable cascade drug release and enhance therapeutic efficacy.The disulfide bond-driven prodrug nanosystems not only respond to the redox-heterogeneity in tumor,but also respond to the exogenous oxidant(singlet oxygen)elicited by photosensitizers.Once the prodrug nanoparticles(NPs)are activated under irradiation,they would undergo an oxidative self-strengthened process,resulting in a facilitated drug cascade release.The IC50 value of the PPa@PTX-S-S NPs without irradiation was 2-fold higher than those of NPs plus irradiation.In vivo,the PPa@PTX prodrug NPs display prolonged systemic circulation and increased accumulation in tumor site.The PPa@PTXS-S NPs showed much higher efficiency than free PTX or the PPa@PTX-C-C NPs to suppress the growth of 4 T1 tumors.Therefore,this novel oxidation-strengthened disulfide-bridged prodrug-nanosystem has a great potential in the enhanced efficacy of cancer synergetic photochemotherapy. 展开更多
关键词 Prodrug nanoplatform disulfide bond Pyropheophorbide a Redox-heterogeneity Accurate therapy
下载PDF
Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies 被引量:1
7
作者 Yuequan Wang Cong Luo +8 位作者 Shuang Zhou Xinhui Wang Xuanbo Zhang Shumeng Li Shenwu Zhang Shuo Wang Bingjun Sun Zhonggui He Jin Sun 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2021年第5期643-652,共10页
Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles(PNPs) for precise cancer therapy. Yet, there is no research shedding light on th... Disulfide bond-bridging strategy has been extensively utilized to construct tumor specificity-responsive aliphatic prodrug nanoparticles(PNPs) for precise cancer therapy. Yet, there is no research shedding light on the impacts of the saturation and cis-trans configuration of aliphatic tails on the self-assembly capacity of disulfide bond-linked prodrugs and the in vivo delivery fate of PNPs. Herein, five disulfide bond-linked docetaxelfatty acid prodrugs are designed and synthesized by using stearic acid, elaidic acid, oleic acid, linoleic acid and linolenic acid as the aliphatic tails, respectively. Interestingly, the cistrans configuration of aliphatic tails significantly influences the self-assembly features of prodrugs, and elaidic acid-linked prodrug with a trans double bond show poor self-assembly capacity. Although the aliphatic tails have almost no effect on the redox-sensitive drug release and cytotoxicity, different aliphatic tails significantly influence the chemical stability of prodrugs and the colloidal stability of PNPs, thus affecting the in vivo pharmacokinetics, biodistribution and antitumor efficacy of PNPs. Our findings illustrate how aliphatic tails affect the assembly characteristic of disulfide bond-linked aliphatic prodrugs and the in vivo delivery fate of PNPs, and thus provide theoretical basis for future development of disulfide bond-bridged aliphatic prodrugs. 展开更多
关键词 DOCETAXEL Aliphatic prodrug disulfide bond Self-assembly capacity In vivo drug delivery fate
下载PDF
In Silico Disulfide Bond Engineering to Improve Human LEPTIN Stability
8
作者 Bahram Barati Fatemeh Fazeli Zafar +3 位作者 Shuanhu Hu Najmeh Fani Sajjad Eshtiaghi Shuang Wang 《Journal of Renewable Materials》 SCIE EI 2021年第11期1843-1857,共15页
Enhancing the stability of biomolecules is one of the hot topics in industry.In this study,we enhanced the stability of an important protein called LEPTIN.LEPTIN is a hormone secreted by fat cells playing an essential... Enhancing the stability of biomolecules is one of the hot topics in industry.In this study,we enhanced the stability of an important protein called LEPTIN.LEPTIN is a hormone secreted by fat cells playing an essential role in body weight and composition,and its deficiency can result in several disorders.The treatment of related LEPTIN dysfunctions is often available in the form of injection.To decrease the cost and the frequency of its applications can be achieved by increasing its lifetime through engineering LEPTIN.In this study,to engineer LEPTIN,we have introduced disulfide bonds.Disulfide By Design server was used to predict the suitable nominate pairs,which suggested three pairs of amino acids to be mutated to cysteine for disulfide bond formation.Additionally,to further evaluate the effect of combined mutations,we combined these three nominated pairs to produce three more mutants.In order to assess the effect of introduced mutations,molecular dynamic(MD)simulation was performed.The result suggests that Mutant-1 is more stable in comparison to wild-type and the other mutants.Moreover,docking results showed that the introduced mutation does not affect the receptor binding performance;therefore,it can be considered a suitable choice for future protein engineering. 展开更多
关键词 Insilco protein engineering LEPTIN disulfide bond prediction molecular dynamic simulation DOCKING
下载PDF
A Prediction Method of Protein Disulfide Bond Based on Hybrid Strategy
9
作者 Pengfei Sun Yunhong Ding +1 位作者 Yuyan Huang Lei Zhang 《Journal of Biomedical Science and Engineering》 2016年第10期116-121,共6页
A prediction method of protein disulfide bond based on support vector machine and sample selection is proposed in this paper. First, the protein sequences selected are en-coded according to a certain encoding, input d... A prediction method of protein disulfide bond based on support vector machine and sample selection is proposed in this paper. First, the protein sequences selected are en-coded according to a certain encoding, input data for the prediction model of protein disulfide bond is generated;Then sample selection technique is used to select a portion of input data as training samples of support vector machine;finally the prediction model training samples trained is used to predict protein disulfide bond. The result of simulation experiment shows that the prediction model based on support vector ma-chine and sample selection can increase the prediction accuracy of protein disulfide bond. 展开更多
关键词 disulfide Bond Support Vector Machine Sample Selection
下载PDF
Transfer of disulfide bond formation modules via yeast artificial chromosomes promotes the expression of heterologous proteins inKluyveromyces marxianus
10
作者 Pingping Wu Wenjuan Mo +6 位作者 Tian Tian Kunfeng Song Yilin Lyu Haiyan Ren Jungang Zhou Yao Yu Hong Lu 《mLife》 CSCD 2024年第1期129-142,共14页
Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins.Improving the yield in K.marxianus remains a challenge and incorporating large-scale functional modules poses a tec... Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins.Improving the yield in K.marxianus remains a challenge and incorporating large-scale functional modules poses a technical obstacle in engineering.To address these issues,linear and circular yeast artificial chromosomes of K.marxianus(KmYACs)were constructed and loaded with disulfide bond formation modules from Pichia pastoris or K.marxianus.These modules contained up to seven genes with a maximum size of 15 kb.KmYACs carried telomeres either from K.marxianus or Tetrahymena.KmYACs were transferred successfully into K.marxianus and stably propagated without affecting the normal growth of the host,regardless of the type of telomeres and configurations of KmYACs.KmYACs increased the overall expression levels of disulfide bond formation genes and significantly enhanced the yield of various heterologous proteins.In high-density fermentation,the use of KmYACs resulted in a glucoamylase yield of 16.8 g/l,the highest reported level to date in K.marxianus.Transcriptomic and metabolomic analysis of cells containing KmYACs suggested increased flavin adenine dinucleotide biosynthesis,enhanced flux entering the tricarboxylic acid cycle,and a preferred demand for lysine and arginine as features of cells overexpressing heterologous proteins.Consistently,supplementing lysine or arginine further improved the yield.Therefore,KmYAC provides a powerful platform for manipulating large modules with enormous potential for industrial applications and fundamental research.Transferring the disulfide bond formation module via YACs proves to be an efficient strategy for improving the yield of heterologous proteins,and this strategy may be applied to optimize other microbial cell factories. 展开更多
关键词 disulfide bond formation expression of heterologous proteins Kluyveromyces marxianus TELOMERE yeast artificial chromosome
原文传递
重组人纽兰格林一级结构确证与二硫键分析 被引量:1
11
作者 薛燕 刘炳玉 +5 位作者 李萍 王杰 何昆 魏开华 张学敏 杨松成 《分析测试学报》 CAS CSCD 北大核心 2007年第z1期35-37,共3页
Neuregulin plays an important role in heart structure and function.Research discovered that recombinant neuregulin could reduce the degree of damage on myocardial cells caused by ischemia,hypoxia and viral infection.T... Neuregulin plays an important role in heart structure and function.Research discovered that recombinant neuregulin could reduce the degree of damage on myocardial cells caused by ischemia,hypoxia and viral infection.The primary structure,including N-terminal sequence,C-terminal sequence,PMF,accurate molecular mass,and disulfide bonding pattern of recombinant human neuregulin,have been identified by ESI-Q-TOF MS,Autoflex MALDI-TOF MS,9.4T Apex Q-FT MS and Ultraflex Ⅲ MALDI-TOF/TOF combining with two e]ymatic digestion.A abnormal peptide impurity in this drug was found and sequenced by Q-TOF MS and TOF/TOF MS,this is useful for the product quanlity control. 展开更多
关键词 NEUREGULIN Q-TOF MS TOF/TOF MS disulfide bond MS
下载PDF
Synthesis, Characterization and Crystal Structure of a New Schiff Base Ligand from a Bis(Thiazoline) Template and Hydrolytic Cleavage of the Imine Bond Induced by a Co(II) Cation
12
作者 Jafar Attar Gharamaleki Fahimeh Akbari +2 位作者 Akram Karbalaei Kamran B. Ghiassi Marilyn M. Olmstead 《Open Journal of Inorganic Chemistry》 2016年第1期76-88,共13页
The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of t... The reaction of bis-[2-amino-4-pheny1-5-thiazolyl] disulfide with 5-nitro-salicylaldehyde in absolute ethanol resulted in the formation of a new Schiff base ligand H<sub>2</sub>L (1). Characterization of the ligand was performed by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, UV-Vis, elemental analysis and single crystal X-ray diffraction. The ligand, (1), possesses a disulfide –S–S– bridge of 2.1121 (3) ? length, and the molecule adopts a cis-conformation around this bond. In the crystal structure of (1), an intramolecular O–H···N hydrogen bond with D… A distance of 2.69 (3) ? was present. The reaction of (1) with Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and CuCl<sub>2</sub>·2H<sub>2</sub>O in methanol afforded the corresponding metal complexes. The obtained solids were further investigated by elemental analysis and UV-Vis titration that confirmed the formation of [CoL] and [ClCuHL] complexes. However, recrystallizaion of the Co(II) complex in dimethylsulfoxide caused the complete hydrolysis of the imine bond and afforded a Co(II) complex in which two 5-nitro-salicylaldehyde and two DMSO molecules were coordinated to the central metal in an octahedral fashion. This structure (2) was also confirmed by single crystal X-ray analysis. 展开更多
关键词 Schiff Base Thiazoline Ligand disulfide Bond Co(II) and Cu(II) Complexes Hydrolytic Cleavage Solution Study
下载PDF
Disulfide Crosslinking-Induced Aggregation:Towards Solid-State Fluorescent Carbon Dots with Vastly Different Emission Colors
13
作者 Rui Fu Haoqiang Song +5 位作者 Xingjiang Liu Yongqiang Zhang Guanjun Xiao Bo Zou Geoffrey I.N.Waterhouse Siyu Lu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第9期1007-1014,共8页
Solid-state fluorescent multi-color carbon dots(SFM-CDs),prepared using the same precursor(s)without the need for dispersion in a solid matrix,are highly demanded for a wide range of applications.Herein,we report a mi... Solid-state fluorescent multi-color carbon dots(SFM-CDs),prepared using the same precursor(s)without the need for dispersion in a solid matrix,are highly demanded for a wide range of applications.Herein,we report a microwave-assisted strategy for the prepara-tion of SFM-CDs with blue,yellow and red emissions within 5 min from the same precursors.The as-prepared B-CDs,Y-CDs,and R-CDs possessed bright fluorescence at 425 nm,550 nm,and 640 nm,and photoluminescence quantum yields(PLQYs)of 54.68%,17.93%,and 2.88%,respectively.The structure of SFM-CDs consisted of 5-oxo-3,5-dihydro-2H-thiazolo[3,2-a]pyridine-7-carboxylic acid(TPCA)immobilized on the surface of a carbon core,with the size of the carbon core and degree of disulfide crosslinking between CDs both increasing on going from the B-CDs to the R-CDs,as verified by mechanochromic experiments.The excellent solid-state fluorescence performance of the SFM-CDs allowed their utilization as the fluorescent converter layer in multi-color LEDs and white LEDs with a high color rendering index. 展开更多
关键词 Solid-state fluorescence MULTICOLOR Cross-linked aggregation disulfide bond Carbon dots
原文传递
Engineering Reversible Hydrogels for 3D Cell Culture and Release Using Diselenide Catalyzed Fast Disulfide Formation 被引量:1
14
作者 Yueying Han Cheng Liu +1 位作者 Huaping Xu Yi Cao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2022年第13期1578-1584,I0002,共8页
Hydrogels crosslinked by dynamic covalent bonds can effectively mimic the viscoelastic properties of native extracellular matrix and have been widely explored for 3D cell culture.Disulfide is one of the most common dy... Hydrogels crosslinked by dynamic covalent bonds can effectively mimic the viscoelastic properties of native extracellular matrix and have been widely explored for 3D cell culture.Disulfide is one of the most common dynamic bonds in biological systems whose formation and cleavage are catalyzed by a set of dedicated enzymes.However,in vitro formation of disulfide bonds is a slow process and requires harsh catalysts.Therefore,it is difficult to use disulfide crosslinked hydrogels for cell culture.n this work,we show that disulfide bonds can be formed by thiol-diselenide(Dise)exchange under blue light llumination.This reaction is fast,reversible,and biocompatible.Moreover,residual diselenide in the hydrogel network can also accelerate thiol-disulfide exchange reactions leading to faster cell release from the hydrogels upon the addition of thiol-containing agents.We anticipate that disulfide crosslinked hydrogels catalyzed by diselenide can find broad biomedical applications,such as cell culture,celldelivery,and drug-controlled release. 展开更多
关键词 disulfide bonds Diselenide bonds PHOTOCATALYSIS GELS Cellencapsulation
原文传递
The effect of lengths of branched-chain fatty alcohols on the efficacy and safety of docetaxel-prodrug nanoassemblies
15
作者 Shuo Wang Tian Liu +8 位作者 Yuetong Huang Chaoying Du Danping Wang Xiyan Wang Qingzhi Lv Zhonggui He Yinglei Zhai Bingjun Sun Jin Sun 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第3期1400-1411,共12页
The self-assembly prodrugs are usually consisted of drug modules,activation modules,and assembly modules.Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing... The self-assembly prodrugs are usually consisted of drug modules,activation modules,and assembly modules.Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing prodrug nanoassemblies.This study designed four docetaxel(DTX)prodrugs using disulfide bonds as activation modules and different lengths of branched-chain fatty alcohols as assembly modules(C_(16),C_(18),C_(20),and C_(24)).The lengths of the assembly modules determined the self-assembly ability of prodrugs and affected the activation modules’sensitivity.The extension of the carbon chains improved the prodrugs’self-assembly ability and pharmacokinetic behavior while reducing the cytotoxicity and increased cumulative toxicity.The use of C_(20) can balance efficacy and safety.These results provide a great reference for the rational design of prodrug nanoassemblies. 展开更多
关键词 PRODRUGS NANOASSEMBLIES Self-assembly Branched-chain fatty alcohols disulfide bond DOCETAXEL Efficacy Safety
原文传递
In situ autophagy regulation in synergy with phototherapy for breast cancer treatment
16
作者 Huijuan Zhang Xiangyang Xuan +7 位作者 Yaping Wang Zijun Qi Kexuan Cao Yingmei Tian Chaoqun Wang Junbiao Chang Zhenzhong Zhang Lin Hou 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第5期2317-2332,共16页
Autophagy is an important factor in reducing the efficacy of tumor phototherapy(including PTT and PDT).Accurate regulation of autophagy in tumor cells is a new strategy to improve the anti-tumor efficiency of PTT/PDT.... Autophagy is an important factor in reducing the efficacy of tumor phototherapy(including PTT and PDT).Accurate regulation of autophagy in tumor cells is a new strategy to improve the anti-tumor efficiency of PTT/PDT.This project intended to construct a tumor-activated autophagy regulator to efficiently block PTT/PDT-induced autophagy and realize synergistic sensitization to tumor phototherapy.To achieve this goal,we first synthesized TRANSFERRIN(Tf)biomimetic mineralized nano-tellurium(Tf-Te)as photosensitizer and then used disulfide bond reconstruction technology to induce Tf-Te self-assembly.The autophagy inhibitor hydroxychloroquine(HCQ)and iron ions carried by Tf were simultaneously loaded to prepare a tumor-responsive drug reservoir Tf-Te/HCQ.After entering breast cancer cells through the“self-guidance system”,Tf-Te/HCQ can generate hyperpyrexia and ROS under NIR laser irradiation,to efficiently induce PTT/PDT effect.Meanwhile,the disulfide bond broke down in response to GSH,and the nanoparticles disintegrated to release Fe2+and HCQ at fixed points.They simultaneously induce lysosomal alkalinization and increased osmotic pressure,effectively inhibit autophagy,and synergistically enhance the therapeutic effect of phototherapy.In vivo anti-tumor results have proved that the tumor inhibition rate of Tf-Te/HCQ can be as high as 88.6%on 4T1 tumor-bearing mice.This multifunctional drug delivery system might provide a new alternative for more precise and effective tumor phototherapy. 展开更多
关键词 AUTOPHAGY Tumor phototherapy Synergistic sensitization HCQ TRANSFERRIN disulfide bond reconstruction GSH Biomimetic mineralized nano-tellurium
原文传递
Investigation on Self-healing Property of Epoxy Resins Based on Disulfide Dynamic Links 被引量:6
17
作者 Zi-Jian Li Jiang Zhong +6 位作者 Mao-Chen Liu Jin-Chuang Rong Kun Yang Ji-Yong Zhou Liang Shen Fei Gao Hai-Feng He 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第9期932-940,I0005,共10页
Self-healing polymers based on dynamic crosslinkers have drawn rapidly increasing interest over the last decade.Here,a self-healable epoxy network with exchangeable disulfide bonds was synthesized by polymerizing two ... Self-healing polymers based on dynamic crosslinkers have drawn rapidly increasing interest over the last decade.Here,a self-healable epoxy network with exchangeable disulfide bonds was synthesized by polymerizing two epoxies with an aromatic amine containing a disulfide bond.The bisphenol A diglycidyl ether(DGEBA)and poly(ethylene glycol)diglycidyl ether(DER736)were used as rigid and soft components,respectively.The crosslinking densities of studied polymers decreased with the increasing amount of DER736,resulting in the lower glassy temperature and weaker mechanical strength.The dynamic covalent network character of disulfide bond and its low active energy were also investigated through stress relaxation experiments at various temperatures.The self-healing performance of healable epoxy resins with varied flexibility was measured by tensile tests.The tensile strength of a full-cut sample was restored to 84%(13 MPa)of the initial values(16 MPa)at moderate temperature.Its healed fracture strain was up to 505%.Moreover,the effect of healing time and temperature on the self-healing properties was also studied.A model was proposed to investigate the self-repairing efficiency evolution with healing time,suggesting that hydrogen bonds mainly contributed to the initial sticking or interfacial adhesion while disulfide links and chain interdiffusion assisted time dependent reformation of networks to restore the original mechanical strength. 展开更多
关键词 SELF-HEALING Epoxy resin disulfide bond
原文传递
Dynamic Bonds Mediate π-π Interaction via Phase Locking Effect for Enhanced Heat Resistant Thermoplastic Polyurethane
18
作者 Yue Lai Xiao Kuang +5 位作者 Wen-Hong Yang Yu Wang Ping Zhu Jing-Pu Li Xia Dong Du-Jin Wang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第2期154-163,I0005,共11页
Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the... Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the structure and properties of a new type of thermoplastic polyurethanes(TPUs)with trapped dynamic covalent bonds in the hard-phase domain and report the frustrated relaxation of TPUs containing weak dynamic bond andπ-πinteraction in hard segments.As detected by rheometry,the aromatic TPUs with alkyl disulfide in the hard segments possess the maximum network relaxation time in contrast to those without dynamic bonds and alicyclic TPUs.In situ FTIR and small-angle scattering results reveal that the alkyl disulfide facilitates stronger intermolecular interaction and more stable micro-phase morphology inπ-πinteraction based aromatic TPUs.Molecular dynamics simulation for pure hard segments of model molecules verify that the presence of disulfide bonds leads to strongerπ-πstacking of aromatic rings due to both enhanced assembling thermodynamics and kinetics.The enhancedπ-πpacking and micro-phase structure in TPUs further kinetically immobilize the dynamic bond.This kinetically interlocking between the weak dynamic bonds and strong molecular interaction in hard segments leads to much slower network relaxation of TPU.This work provides a new insight in tuning the network relaxation and heat resistance as well as molecular self-assembly in stimulus-responsive dynamic polymers by both molecular design and micro-phase control toward the functional applications of advanced materials. 展开更多
关键词 Thermoplastic polyurethane disulfide bond Stimuli-responsive rearrangement π-πStacking Phase locked effect
原文传递
Site-specific protein modification by genetic encoded disulfide compatible thiols
19
作者 Xinyu Ling Heqi Chen +3 位作者 Wei Zheng Liying Chang Yong Wang Tao Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期163-166,共4页
Cysteine chemistry provides a low cost and convenient way for site-specific protein modification.However,recombinant expression of disulfide bonding containing protein with unpaired cysteine is technically challenging... Cysteine chemistry provides a low cost and convenient way for site-specific protein modification.However,recombinant expression of disulfide bonding containing protein with unpaired cysteine is technically challenging and the resulting protein often suffers from significantly reduced yield and activity.Here we used genetic code expansion technique to introduce a surface exposed self-paired dithiol functional group into proteins,which can be selectively reduced to afford active thiols.Two compounds containing self-paired disulfides were synthesized,and their genetic incorporations were validated using green fluorescent proteins(GFP).The compatibility of these self-paired di-thiols with natural disulfide bond was demonstrated using antibody fragment to afford site-specifically labeled antibody.This work provides another valuable building block into the chemical tool-box for site-specific labeling of proteins containing internal disulfides. 展开更多
关键词 Cysteine chemistry Genetic code expansion Protein modification Biorthogonal chemistry disulfide bond
原文传递
Raman imaging analysis of intracellular biothiols independent of the aggregation of sensing substrates
20
作者 Min Zhang Zijun Li +4 位作者 Mengyang Zhang Hang Heng Shiying Xu Zhaoyin Wang Zhihui Dai 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第8期2416-2424,共9页
The content of biothiols in cells is highly associated with the occurrence and development of several diseases.However,due to their active chemical properties,thiol-contained molecules are normally volatile during the... The content of biothiols in cells is highly associated with the occurrence and development of several diseases.However,due to their active chemical properties,thiol-contained molecules are normally volatile during the detection process,rendering precise analysis of intracellular biothiols challenging.In this study,5,5’-dithiobis-(2-nitrobenzoic acid)(DTNB)is covalently modified on the surface of gold nanorods(AuNRs),constructing sensing substrates for in situ Raman imaging analysis of biothiols in cells.Au NRs are able to serve as ideal surface-enhanced Raman scattering substrates,and thus Raman signals of DTNB are greatly amplified by AuNRs.Meanwhile,the disulfide bond of DTNB can be broken by thiols,thereby releasing part of DTNB from the surface of AuNRs.As a result,three kinds of main biothiols are sensitively quantified with DTNB-modified AuNRs according to the variation of Raman signals,and DTNB-modified Au NRs exhibit far better analytical performance than a commercial probe.In addition,the sensing substrates can be readily delivered to cytoplasm with the transmembrane of Au NRs,and are capable of responding to biothiols in cells.Notably,the Raman approach is established by the breaking of chemical bonds rather than the aggregation of substrates,which is more inclined to analyze intracellular biothiols with a desirable spatial resolution.Therefore,fluctuation of biothiols in glioma cells is evidently observed via Raman imaging.Overall,this work provides an alternative strategy for designing Raman sensors to visualize active molecules in cells. 展开更多
关键词 AuNRs SERS biothiols IMAGING disulfide bond
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部