期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
EFFECT OF ANGELICA SINENSIS ON AFFERENT DISCHARGE OF SINGLE MUSCLE SPINDLE IN TO ADS 被引量:1
1
作者 高云芳 樊小力 《Journal of Pharmaceutical Analysis》 SCIE CAS 2004年第2期178-180,共3页
Objective In drugs for i nvigorating blood circulation, to find a herb that can stimulate afferent discha rge of muscle spindle. Methods A single muscle spindle was isolated from sartorial mus cle of toad. Using ai... Objective In drugs for i nvigorating blood circulation, to find a herb that can stimulate afferent discha rge of muscle spindle. Methods A single muscle spindle was isolated from sartorial mus cle of toad. Using air-gap technique, afferent discharge of the muscle spindle was recorded. Effects of Angelica Sinensis, Salvia Miltiorrhiza, and Safflower o n afferent discharge of the muscle spindle were observed. Results Angelica Sinensis could distinctly increase afferent di scharge frequency of the muscle spindle, and this increase was dose-dependent. But Salvia Miltiorrhiza and Safflower had no this excitatory effect. Conclusion It is known that Angelica Sinensis can invigorate bl ood circulation, and we have found its excitatory effect on muscle spindle which makes it possible to serve people with muscle atrophy if more evidences from cl inical experiments are available. 展开更多
关键词 Angelica Sinensis muscle spindle air-gap techni que disuse atrophy
下载PDF
Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers 被引量:2
2
作者 Branden L.Nguyen Toshinori Yoshihara +4 位作者 Rafael Deminice Jensen Lawrence Mustafa Ozdemir Hayden Hyatt Scott K.Powers 《Sports Medicine and Health Science》 2021年第3期148-156,共9页
Endurance exercise training promotes a protective phenotype in skeletal muscle known as exercise pre-conditioning.Exercise preconditioning protects muscle fibers against a variety of threats including inactivity-induc... Endurance exercise training promotes a protective phenotype in skeletal muscle known as exercise pre-conditioning.Exercise preconditioning protects muscle fibers against a variety of threats including inactivity-induced muscle atrophy.The mechanism(s)responsible for exercise preconditioning remain unknown and are explored in these experiments.Specifically,we investigated the impact of endurance exercise training on key components of the renin-angiotensin system(RAS).The RAS was targeted because activation of the classical axis of the RAS pathway via angiotensinⅡtypeⅠreceptors(AT1Rs)promotes muscle atrophy whereas activation of the non-classical RAS axis via Mas receptors(MasRs)inhibits the atrophic signaling of the classical RAS pathway.Guided by prior studies,we hypothesized that an exercise-induced decrease in AT1Rs and/or increases in MasRs in skeletal muscle fibers is a potential mechanism responsible for exercise preconditioning.Following endurance exercise training in rats,we examined the abundance of AT1Rs and MasRs in both locomotor and respiratory muscles.Our results indicate that endurance exercise training does not alter the protein abundance of AT1Rs or MasRs in muscle fibers from the diaphragm,plantaris,and soleus muscles compared to sedentary controls(p>0.05).Furthermore,fluorescent angiotensinⅡ(AngⅡ)binding analyses confirm our results that exercise pre-conditioning does not alter the protein abundance of AT1Rs in the diaphragm,plantaris,and soleus(p>0.05).This study confirms that exercise-induced changes in RAS receptors are not a key mechanism that contributes to the beneficial effects of exercise preconditioning in skeletal muscle fibers. 展开更多
关键词 Exercise preconditioning Renin-angiotensin system Skeletal muscle disuse atrophy Skeletal muscle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部