期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Novel mutation of SPG4 gene in a Chinese family with hereditary spastic paraplegia:A case report
1
作者 Jie Wang Wei-Ting Bu +2 位作者 Mei-Jia Zhu Ji-You Tang Xiao-Min Liu 《World Journal of Clinical Cases》 SCIE 2023年第14期3288-3294,共7页
BACKGROUND Hereditary spastic paraplegia(HSP)is a group of neurogenetic diseases of the corticospinal tract,accompanied by distinct spasticity and weakness of the lower extremities.Mutations in the spastic paraplegia ... BACKGROUND Hereditary spastic paraplegia(HSP)is a group of neurogenetic diseases of the corticospinal tract,accompanied by distinct spasticity and weakness of the lower extremities.Mutations in the spastic paraplegia type 4(SPG4)gene,encoding the spastin protein,are the major cause of the disease.This study reported a Chinese family with HSP caused by a novel mutation of the SPG4 gene.CASE SUMMARY A 44-year-old male was admitted to our hospital for long-term right lower limb weakness,leg stiffness,and unstable walking.His symptoms gradually worsened,while no obvious muscle atrophy in the lower limbs was found.Neurological examinations revealed that the muscle strength of the lower limbs was normal,and knee reflex hyperreflexia and bilateral positive Babinski signs were detected.Members of his family also had the same symptoms.Using mutation analysis,a novel heterozygous duplication mutation,c.1053dupA,p.(Gln352Thrfs*15),was identified in the SPG4 gene in this family.CONCLUSION A Chinese family with HSP had a novel mutation of the SPG4 gene,which is autosomal dominant and inherited as pure HSP.The age of onset,sex distribution,and clinical manifestations of all existing living patients in this family were analyzed.The findings may extend the current knowledge on the existing mutations in the SPG4 gene. 展开更多
关键词 Hereditary spastic paraplegia SPG4 gene MUTATION Genetic testing Autosomal dominant HSP Adenosine triphosphatases associated with diverse cellular activities Case report
下载PDF
Changes of soil microbial communities during decomposition of straw residues under different land uses 被引量:9
2
作者 ZHANG Hong XU Wenxin +3 位作者 LI Yubao LYU Jialong CAO Yingfei HE Wenxiang 《Journal of Arid Land》 SCIE CSCD 2017年第5期666-677,共12页
Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw d... Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw decomposition in three fields, i.e., cropland, peach orchard and vineyard. Straw decomposition was monitored for 360 d using a mesh-bag method. Soil microbial metabolic activity and functional diversity were measured using the Biolog-Eco system. In all three fields, dried straws with a smaller size decomposed faster than their fresh counterparts that had a larger size. Dried corn straw decomposed slower than dried soybean straw in the early and middle stages, while the reverse trend was found in the late stage. The cropland showed the highest increase in microbial metabolic activity during the straw decomposition, whereas the peach orchard showed the lowest. There was no significant change in the species dominance or evenness of soil microbial communities during the straw decomposition. However, the species richness fluctuated significantly, with the peach orchard showing the highest richness and the cropland the lowest. With different carbon sources, the peach orchard utilised carbon the most, followed by the cropland and the vineyard. In all three fields, carbon was utilized in following decreasing order: saccharides〉amino acids〉polymers〉polyamines〉carboxylic acids〉aromatic compounds. In terms of carbon-source utilization, soil microbial communities in the peach orchard were less stable than those in the cropland. The metabolic activity and species dominance of soil microbial communities were negatively correlated with the straw residual percentage. Refractory components were primarily accumulated in the late stages, thus slowing down the straw decomposition. The results showed that dried and crushed corn straw was better for application in long-term fields. The diversity of soil microbial communities was more stable in cropland than in orchards during the straw decomposition. 展开更多
关键词 long-term field straw decomposition soil microbial activity functional diversity carbon utilisation
下载PDF
Species and Organ Diversity in the Effects of Hydrogen Peroxide on Superoxide Dismutase Activity In Vitro 被引量:3
3
作者 Hong-Yan Cheng Song-Quan Song 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2006年第6期672-678,共7页
Superoxlde dlsmutase (SOD) is ubiquitous in aerobic organisms and constitutes the first link In the enzyme scavenging system of reactive oxygen species. In the present study, species and organ diversity of SOD activ... Superoxlde dlsmutase (SOD) is ubiquitous in aerobic organisms and constitutes the first link In the enzyme scavenging system of reactive oxygen species. In the present study, species and organ diversity of SOD activity In a solution and In an in-gel assay system, as well as the effects of hydrogen peroxide (H202) on SOD activity, were Investigated. In a solution assay system, SOD activity of jackfruIt root, shoot, leaves, axes, and cotyledons, of maize embryos and endosperms, of mung bean leaves and seeds, of sacred lotus axes and cotyledons, and of rice and wheat leaves was Increased by 1-15 mmol/L H2O2. However, SOD activity In rice root and seeds, maize roots and leaves, mung bean roots and shoots, and wheat seeds was decreased by 1-15 mmol/L H2O2. The SOD activity of wheat root and soybean roots, leaves, axes, and cotyledons was Increased by 1-4 mmol/L H2O2, but was decreased by concentrations of H2O2 〉4 mmol/L. The SOD activity of soybean shoots was not affected by 1-15 mmol/L H2O2. The SOD activity In crude mltochondrla of jackfruIt, maize, and upas seeds, as well as In purified mitochondria of jackfruIt, was also Increased by 1-15 mmol/L H2O2. In the In-gel assay system, the SOD In jackfruIt cotyledons was comprised of Mn-SOD, Cu/Zn-SOD, and Fe-SOD, the crude mltochondria of jackfruit seeds and maizes embryo was comprised of Mn-SOD and Cu/ Zn-SOD, and the crude mltochondria of maize seeds was comprised of Mn-SOD only. In the present study, H2O2 markedly Inhibited Cu/Zn-SOD and Fe-SOD activity. 展开更多
关键词 hydrogen peroxide inhibitor informative in-gel assay system solution assay system species and organ diversity superoxide dismutase activity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部