Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar...Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.展开更多
Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Cal...Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.展开更多
Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood ...Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material.展开更多
Wet wood is an abnormal phenomenon in growing trees,which adversely affects growth,subsequent wood processing and economic values of wood products.In this study,the influences of factors such as clones,afforestation m...Wet wood is an abnormal phenomenon in growing trees,which adversely affects growth,subsequent wood processing and economic values of wood products.In this study,the influences of factors such as clones,afforestation methods,site conditions and climate conditions on the characteristics of poplar wetwood were studied through field investigations in 27 clones from 48 sample plots in 28 counties.Results showed that the incidences of wetwood were almost 100%in all plots.Ratios of wetwood area among the48 plots differed from 15.1 to 90.2%.Wetwood area ratios,moisture contents and pH differed significantly between the 27 clones.Wetwood area ratios of the clones ranged from18.7 to 62.3%.Ratios of wetwood areas were positively correlated with wet wood moisture content and pH,tree age,and negatively correlated with pH of sap wood.The repeatability of wet wood area ratios was 0.52,moderately controlled by genetics.Wetwood moisture content and pH were highly controlled by genetics,indicated by the repeatability of 0.91 and 0.89,respectively.There were significant differences in wetwood area ratios,moisture content and pH between different site conditions,afforestation methods,and geographical regions.Sloping land had the lowest wetwood area ratios and moisture content among four types of sites.Afforestation by direct seeding and rooted cuttings had the lowest wetwood area ratios and moisture content,respectively.In the three geographical regions,the Yellow River Basin had the lowest wetwood values of all three factors.展开更多
The nuclear-encoded factors and the photosynthetic apparatus have been studied extensively during chloroplast biogenesis.However,many questions regarding these processes remain unanswered,particularly in perennial woo...The nuclear-encoded factors and the photosynthetic apparatus have been studied extensively during chloroplast biogenesis.However,many questions regarding these processes remain unanswered,particularly in perennial woody plants.As a model material of woody plants,poplar not only has very significant value of research,but also possesses economic and ecological properties.This study reports the Populus trichocarpa DJ-1C(PtrDJ1C)factor,encoded by a nuclear gene,and a member of the DJ-1 superfamily.PtrDJ1C knock-out with the CRISPR/Cas9 system resulted in different albino phenotypes.Chlorophyll fluorescence and immunoblot analyses showed that the levels of photosynthetic complex proteins decreased significantly.Moreover,the transcript level of plastid-encoded RNA polymerase-dependent genes and the splicing efficiency of several introns were affected in the mutant line.Furthermore,rRNA accumulation was abnormal,leading to developmental defects in chloroplasts and affecting lignin accumulation.We concluded that the PtrDJ1C protein is essential for early chloroplast development and lignin deposition in poplar.展开更多
Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood ...Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood modification process,and the properties of modified wood were studied.Poplar wood was modified with sodium silicate by vacuum-pressure impregnation.After screening using single-factor experiments,an orthogonal experiment was carried out with solution concentration,impregnation time,impregnation pressure,and the cycle times as experimental factors.The modified poplar with the best properties was selected by fuzzy mathematics and characterized by SEM,FT-IR,XRD and TG.The results showed that some lignin and hemicellulose were removed from the wood due to the alkaline action of sodium silicate,and the orderly crystal area of poplar became disorderly,resulting in the reduction of crystallinity of the modified poplar wood.FT-IR analysis showed that sodium silicate was hydrolyzed to form polysilicic acid in wood,and structural analysis revealed the formation of Si-O-Si and Si-O-C,indicating that sodium silicate reacted with fibers on the wood cell wall.TG-DTG curves showed that the final residual mass of modified poplar wood increased from 25%to 67%,and the temperature of the maximum loss rate decreased from 343℃ to 276℃.The heat release and smoke release of modified poplar wood decreased obviously.This kind of material with high strength and fire resistance can be used in the outdoor building and indoor furniture.展开更多
Drought seriously affects the growth and development of plants.MiR159 is a highly conserved and abundant microRNA family that plays a crucial role in plant growth and stress responses.However,studies of its function i...Drought seriously affects the growth and development of plants.MiR159 is a highly conserved and abundant microRNA family that plays a crucial role in plant growth and stress responses.However,studies of its function in woody plants are still lacking.Here,the expression of miR159a was significantly upregulated after drought treatment in poplar,and the overexpression of miR159a(OX159a)significantly reduced the open area of the stomata and improved water-use efficiency in poplar.After drought treatment,OX159a lines had better scavenging ability of reactive oxygen species and damage of the membrane system was less than that in wild-type lines.MYB was the target gene of miR159a,as verified by psRNATarget prediction,RT-qPCR,degradome sequencing,and 5′rapid amplification of cDNA ends(5′RACE).Additionally,miR159a-short tandem target mimic suppression(STTM)poplar lines showed increased sensitivity to drought stress.Transcriptomic analysis comparing OX159a lines with wild-type lines revealed upregulation of a series of genes related to response to water deprivation and metabolite synthesis.Moreover,drought-responsive miR172d and miR398 were significantly upregulated and downregulated respectively in OX159a lines.This investigation demonstrated that miR159a played a key role in the tolerance of poplar to drought by reducing stomata open area,increasing the number and total area of xylem vessels,and enhancing water-use efficiency,and provided new insights into the role of plant miR159a and crucial candidate genes for the molecular breeding of trees with tolerance to drought stress.展开更多
Fracture is a common failure form of poplar laminated veneer lumber(LVL).In the present work,we performed an experimental study on the mode-I along-grain interlaminar fracture,mode-I cross-grain interlaminar fracture,...Fracture is a common failure form of poplar laminated veneer lumber(LVL).In the present work,we performed an experimental study on the mode-I along-grain interlaminar fracture,mode-I cross-grain interlaminar fracture,and mode-II interlaminar fracture of poplar LVL.We investigated stress mechanisms,failure modes,and fracture toughness values of the different fracture types.The experimental results revealed that the crack in the mode-I along-grain interlaminar fracture specimen propagated along the prefabricated crack direction,and the crack tip broke.The mode-I cross-grain interlaminar fracture specimen had cracks in the vertical direction near the prefabricated crack.In the mode-II interlaminar fracture specimen,cracks appeared along the initial prefabricated crack direction.The load–displacement curves of these three specimens were linear in the early stage of loading.With the increase in the load,a nonlinear segment appeared before crack propagation and a descending segment appeared after crack propagation.The nonlinear segments of the mode-I along-grain interlaminar fracture and mode-II interlaminar fracture were very short,and cracks expanded quickly after their initiation,resulting in brit-tle fracture.The nonlinear segment of the mode-I cross-grain interlaminar fracture was long,resulting in plastic failure.The average toughness values of the mode-I along-grain interlaminar fracture,mode-I cross-grain inter-laminar fracture,and mode-II interlaminar fracture were 15.43,270.15,and 39.72 MPa·mm^(1/2),respectively.展开更多
Poplar wood,which was used as the absorption material for the solar-driven interfacial evaporation,was treated for 3 days,6 days and 9 days with the pectinase,and then was simulated for photothermal evaporation test a...Poplar wood,which was used as the absorption material for the solar-driven interfacial evaporation,was treated for 3 days,6 days and 9 days with the pectinase,and then was simulated for photothermal evaporation test at one standard solar radiation intensity(1 kW⋅m^(−2)).The effects of pectinase treatment on cell passage and water migration capacity of poplars were analyzed by the mercury intrusion porosimetry,the scanning electron microscope and fractal theory.It was found that the pit membrane and the ray parenchyma cells of poplar wood were degraded and destroyed after pectinase treatment.Compared with the untreated poplar wood,the evaporation rate of three sections of the specimen was changed.Especially the evaporation rate of radial and tangential direction was significantly increased.At the same time,based on the experimental data and fractal dimension deduction,fractal characteristics could be found in that the structure of poplars treated with pectinase.The porosity decreased with the increase of the fractal dimension in a certain range.It was shown that it is feasible to evaluate solar-driven water migration capacity by using fractal theory.展开更多
基金supported by the National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of the Shandong Province Government。
文摘Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.32371902,31901327)National Key Research and Development Program of China(Grant Nos.2019YFE0119100,2021YFD2200205)+1 种基金Overseas Expertise Introduction Project for Discipline Innovation(111 Project D18008)The researches foundation of Zhejiang A&F University(Grant No.2018FR013)。
文摘Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.
基金financially supported by the Key Research and Development Program of Hunan Province,China(2023NK2038)National Natural Science Foundation of China(32201485)+2 种基金Natural Science Foundation of Hunan Province,China(2022JJ40863,2023JJ60161)Scientific Research Project of Hunan Provincial Education Department,China(21B0238,22A0177)Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology,China(2023RC3159).
文摘Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material.
基金funded by the Hubei Provincial Natural Science Foundation of China (2021CFB446)the National Natural Science Foundation of China (31570665)+1 种基金the National Key Research and Development Program of China (2021YFD2201202)the Fundamental Research Funds for the Central Universities (2662020YLPY017)。
文摘Wet wood is an abnormal phenomenon in growing trees,which adversely affects growth,subsequent wood processing and economic values of wood products.In this study,the influences of factors such as clones,afforestation methods,site conditions and climate conditions on the characteristics of poplar wetwood were studied through field investigations in 27 clones from 48 sample plots in 28 counties.Results showed that the incidences of wetwood were almost 100%in all plots.Ratios of wetwood area among the48 plots differed from 15.1 to 90.2%.Wetwood area ratios,moisture contents and pH differed significantly between the 27 clones.Wetwood area ratios of the clones ranged from18.7 to 62.3%.Ratios of wetwood areas were positively correlated with wet wood moisture content and pH,tree age,and negatively correlated with pH of sap wood.The repeatability of wet wood area ratios was 0.52,moderately controlled by genetics.Wetwood moisture content and pH were highly controlled by genetics,indicated by the repeatability of 0.91 and 0.89,respectively.There were significant differences in wetwood area ratios,moisture content and pH between different site conditions,afforestation methods,and geographical regions.Sloping land had the lowest wetwood area ratios and moisture content among four types of sites.Afforestation by direct seeding and rooted cuttings had the lowest wetwood area ratios and moisture content,respectively.In the three geographical regions,the Yellow River Basin had the lowest wetwood values of all three factors.
基金supported by the National Natural Science Foundation of China(Grant Nos.32201516,91954202)the Youth Top-notch Talent Program of Hebei Education Department(BJK2022028)+1 种基金National Training Program of Innovation and Entrepreneurship for Undergraduates(Grant Nos.S202110022037,G202010022075)the funding of Hebei North University(XJ2021013)。
文摘The nuclear-encoded factors and the photosynthetic apparatus have been studied extensively during chloroplast biogenesis.However,many questions regarding these processes remain unanswered,particularly in perennial woody plants.As a model material of woody plants,poplar not only has very significant value of research,but also possesses economic and ecological properties.This study reports the Populus trichocarpa DJ-1C(PtrDJ1C)factor,encoded by a nuclear gene,and a member of the DJ-1 superfamily.PtrDJ1C knock-out with the CRISPR/Cas9 system resulted in different albino phenotypes.Chlorophyll fluorescence and immunoblot analyses showed that the levels of photosynthetic complex proteins decreased significantly.Moreover,the transcript level of plastid-encoded RNA polymerase-dependent genes and the splicing efficiency of several introns were affected in the mutant line.Furthermore,rRNA accumulation was abnormal,leading to developmental defects in chloroplasts and affecting lignin accumulation.We concluded that the PtrDJ1C protein is essential for early chloroplast development and lignin deposition in poplar.
基金This work was financially supported by National Natural Science Foundation of China(32201485)Natural Science Foundation of Hunan Province,China(2022JJ40863)+1 种基金Scientific Research Project of Hunan Provincial Education Department,China(21B0238)The Science and Technology Innovation Program of Hunan Province(2021RC4062).
文摘Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood modification process,and the properties of modified wood were studied.Poplar wood was modified with sodium silicate by vacuum-pressure impregnation.After screening using single-factor experiments,an orthogonal experiment was carried out with solution concentration,impregnation time,impregnation pressure,and the cycle times as experimental factors.The modified poplar with the best properties was selected by fuzzy mathematics and characterized by SEM,FT-IR,XRD and TG.The results showed that some lignin and hemicellulose were removed from the wood due to the alkaline action of sodium silicate,and the orderly crystal area of poplar became disorderly,resulting in the reduction of crystallinity of the modified poplar wood.FT-IR analysis showed that sodium silicate was hydrolyzed to form polysilicic acid in wood,and structural analysis revealed the formation of Si-O-Si and Si-O-C,indicating that sodium silicate reacted with fibers on the wood cell wall.TG-DTG curves showed that the final residual mass of modified poplar wood increased from 25%to 67%,and the temperature of the maximum loss rate decreased from 343℃ to 276℃.The heat release and smoke release of modified poplar wood decreased obviously.This kind of material with high strength and fire resistance can be used in the outdoor building and indoor furniture.
基金This work was supported by the National Natural Science Foundation of China(32371577)the Beijing Natural Science Foundation(6232030)the Major Project of Agricultural Biological Breeding(2022ZD0401503).
文摘Drought seriously affects the growth and development of plants.MiR159 is a highly conserved and abundant microRNA family that plays a crucial role in plant growth and stress responses.However,studies of its function in woody plants are still lacking.Here,the expression of miR159a was significantly upregulated after drought treatment in poplar,and the overexpression of miR159a(OX159a)significantly reduced the open area of the stomata and improved water-use efficiency in poplar.After drought treatment,OX159a lines had better scavenging ability of reactive oxygen species and damage of the membrane system was less than that in wild-type lines.MYB was the target gene of miR159a,as verified by psRNATarget prediction,RT-qPCR,degradome sequencing,and 5′rapid amplification of cDNA ends(5′RACE).Additionally,miR159a-short tandem target mimic suppression(STTM)poplar lines showed increased sensitivity to drought stress.Transcriptomic analysis comparing OX159a lines with wild-type lines revealed upregulation of a series of genes related to response to water deprivation and metabolite synthesis.Moreover,drought-responsive miR172d and miR398 were significantly upregulated and downregulated respectively in OX159a lines.This investigation demonstrated that miR159a played a key role in the tolerance of poplar to drought by reducing stomata open area,increasing the number and total area of xylem vessels,and enhancing water-use efficiency,and provided new insights into the role of plant miR159a and crucial candidate genes for the molecular breeding of trees with tolerance to drought stress.
基金the National Natural Science Foundation of China(Grant No.51878590)the Jiangsu Provincial Department of Housing and Construction(Grant Nos.2019ZD092,2020ZD40,2020ZD42)the Sixth Phase of“333 Project”Training Objects in Jiangsu Province and Jiangsu Province High-Level Talent Selection Training(Grant No.JNHB-127)for their financial support.
文摘Fracture is a common failure form of poplar laminated veneer lumber(LVL).In the present work,we performed an experimental study on the mode-I along-grain interlaminar fracture,mode-I cross-grain interlaminar fracture,and mode-II interlaminar fracture of poplar LVL.We investigated stress mechanisms,failure modes,and fracture toughness values of the different fracture types.The experimental results revealed that the crack in the mode-I along-grain interlaminar fracture specimen propagated along the prefabricated crack direction,and the crack tip broke.The mode-I cross-grain interlaminar fracture specimen had cracks in the vertical direction near the prefabricated crack.In the mode-II interlaminar fracture specimen,cracks appeared along the initial prefabricated crack direction.The load–displacement curves of these three specimens were linear in the early stage of loading.With the increase in the load,a nonlinear segment appeared before crack propagation and a descending segment appeared after crack propagation.The nonlinear segments of the mode-I along-grain interlaminar fracture and mode-II interlaminar fracture were very short,and cracks expanded quickly after their initiation,resulting in brit-tle fracture.The nonlinear segment of the mode-I cross-grain interlaminar fracture was long,resulting in plastic failure.The average toughness values of the mode-I along-grain interlaminar fracture,mode-I cross-grain inter-laminar fracture,and mode-II interlaminar fracture were 15.43,270.15,and 39.72 MPa·mm^(1/2),respectively.
基金The authors’funding is supported by the Fundamental Research Funds Jiangsu Vocational College of Agriculture and Forestry(2021KJ20).
文摘Poplar wood,which was used as the absorption material for the solar-driven interfacial evaporation,was treated for 3 days,6 days and 9 days with the pectinase,and then was simulated for photothermal evaporation test at one standard solar radiation intensity(1 kW⋅m^(−2)).The effects of pectinase treatment on cell passage and water migration capacity of poplars were analyzed by the mercury intrusion porosimetry,the scanning electron microscope and fractal theory.It was found that the pit membrane and the ray parenchyma cells of poplar wood were degraded and destroyed after pectinase treatment.Compared with the untreated poplar wood,the evaporation rate of three sections of the specimen was changed.Especially the evaporation rate of radial and tangential direction was significantly increased.At the same time,based on the experimental data and fractal dimension deduction,fractal characteristics could be found in that the structure of poplars treated with pectinase.The porosity decreased with the increase of the fractal dimension in a certain range.It was shown that it is feasible to evaluate solar-driven water migration capacity by using fractal theory.