Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-...Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.展开更多
This paper investigates the channel diversity problem in high frequency(HF) communication systems. Due to the limited HF spectrum resources, a HF communication system with shared channels is considered, where each use...This paper investigates the channel diversity problem in high frequency(HF) communication systems. Due to the limited HF spectrum resources, a HF communication system with shared channels is considered, where each user equipment(UE) has individual communication demand. In order to maximize the communication probability of the whole system, a matching-potential game framework is designed. In detail, the channel diversity problem is decomposed into two sub-problems. One is channel-transmitter matching problem, which can be formulated as a many-to-one matching game. The other is the transmitter allocation problem which decides the transmission object that each transmitter communicates with under channel-transmitter matching result, and this sub-problem can be modeled as a potential game. A multiple round stable matching algorithm(MRSMA) is proposed, which obtains a stable matching result for the first sub-problem, and a distributed BR-based transmitter allocation algorithm(DBRTAA) is designed to reach Nash Equilibrium(NE) of the second sub-problem. Simulation results verify the effectiveness and superiority of the proposed method.展开更多
In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between H...In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.展开更多
On the Cavally River, located on the border between C?te d’Ivoire and Liberia, several hydraulic structures such as bridges and diversion channels are planned to be made in recent years in the operating perimeter of ...On the Cavally River, located on the border between C?te d’Ivoire and Liberia, several hydraulic structures such as bridges and diversion channels are planned to be made in recent years in the operating perimeter of the Ity mining company. A 1D-2D hydraulic model was developed to design a diversion channel to cut a meander of the Cavally River in order to ensure hydraulic operation similar to the initial conditions of the river (water levels, flow and velocities). This model was designed with a flow rate of 240 m3/s and a Manning coefficient of 0.052 m1/3·s-1 for the minor bed and 0.06 m1/3·s-1 for the major bed. The results from the hydraulic model show that the hydraulic conditions (water levels, velocities) in the channel before and after the diversion remain almost like those of the Cavally River.展开更多
With the Tanghe Diversion Channel in Tibet as an example, the theoretical study on the ice control effect of the solar sacks was conducted based on the previous study. The numerical simulation method was adopted and a...With the Tanghe Diversion Channel in Tibet as an example, the theoretical study on the ice control effect of the solar sacks was conducted based on the previous study. The numerical simulation method was adopted and a one-dimensional numerical model for ice crystal in diversion channels in high-altitude cold regions was developed in this article. The heat transfer through the air-water interface and the mass transfer between ice and water were considered in the model. The model was validated by the field observation data on the diversion channel of the Tanghe Hydropower Station. The results show that the ice control effect of the solar sacks is obvious in the channel with large mass flow rate in the high-altitude cold regions.展开更多
The high population and concrete environment alter urban areas by changing temperature, rainfall runoff, and water resource utilization activities. This study was conducted to investigate the water quality features of...The high population and concrete environment alter urban areas by changing temperature, rainfall runoff, and water resource utilization activities. This study was conducted to investigate the water quality features of the Yongding Diversion Channel in Beijing, China, and its relationship with rainfall and urban development. Monthly water quality data were obtained from April to October of 2004 at monitoring sites of Sanjiadian, Gaojing, Luodaozhuang, and Yuyuangtan. The monthly water quality grades from 2007 to 2011 were also investigated and compared with those of other rivers. Dissolved oxygen and pH showed greater decreases after one or two moderate rainfall events than several light rainfall events. The potassium permanganate index (CODMn), ammonia nitrogen (NH3-N) and total phosphorus (TP) increased more after several light rainfall events than after one or two moderate or heavy rainfall events. Pollutant concentrations (CODMn, NH3-N, TP) in downstream regions showed greater changes than those in upstream areas after heavy rainfall events. Intense human activities around the channel greatly influenced the water quality of the channel in rainy season because of runoff pollution; however, heavy rainfall had a strong dilution effect on the pollutant concentrations in rivers. Overall, urban development has obviously deteriorated the water quality of the Yongding Diversion Channel as indicated by an increase in the water quality index from 3.22 in 2008 to 4.55 in 2010. The Pearson correlation between monthly rainfall and water quality indices from 2007 to 2011 ranged from 0.1286 to 0.6968, generally becoming weaker as rainfall and rainfall runoff became more random and extreme.展开更多
The river closure is a key step in the water dam construction, and the end-dump closure is a general way to cut offthe river flow. The hydraulic characteristics at the closure gap are the main factors which affect the...The river closure is a key step in the water dam construction, and the end-dump closure is a general way to cut offthe river flow. The hydraulic characteristics at the closure gap are the main factors which affect the extent of closure difficulty. A method is proposed to reduce the difficulty of diversion channel closure by pre-building a closure structure called the backwater-sill at the downstream toe of the closure gap to change the flow pattern at the closure gap. The results of the physical model test and the three- dimensional numerical simulation indicate that the backwater-sill has the effects of raising the water level at the downstream toe of the closure gap, decreasing the water surface gradient, and reducing the closure drop and the flow velocity at the closure gap. The schemes with different dike widths, different closure gap widths, and different backwater-sill widths and heights are simulated. The results show that the height of the backwater-sill is the key factor affecting the hydro-indicators at the closure gap, while the influe- nce of the dike width, the closure gap width or the backwater-sill width can be ignored. The higher the backwater-sill is, the lower the hydro-indicators will be. Based on the numerical simulations and the physical model tests on the hydraulic characteristics at the closure gap of the backwater-sill assisted closure, the hydro-indicators and its calculation method are proposed to provide a theoreti- cal support for the river closure.展开更多
This paper considers the design of a low-complexity and high-performance precoder for multiple-input multiple-output(MIMO)systems.The precoder is designed by combining both nonlinear and non-iterative processing strat...This paper considers the design of a low-complexity and high-performance precoder for multiple-input multiple-output(MIMO)systems.The precoder is designed by combining both nonlinear and non-iterative processing strategies.The proposed nonlin-ear precoding techniques employ a nonlinear constellation precoding technique based on maximum distance sepa-rable codes at the transmitter.We propose to reduce the computational complexity in iterative-based precoding algorithms by using less complex non-iterative singular value decomposition-based joint precoder and decoder pair design.The maximum likelihood detection for the lin-ear MIMO channel is considered.The simulation results showed that the proposed nonlinear and non-iterative precoding schemes outperform the conventional linear MIMO precoder design,even when a reduced-complexity suboptimal strategy is adopted,considering the bit error rate performance.展开更多
基金supported in part by the National Natural Science Foundation of China(No.U22A2001)the National Key Research and Development Program of China(No.2022YFB2902202,No.2022YFB2902205)。
文摘Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034in part by the National Natural Science Foundation of China under Grant No. 61671473 and No. 61631020in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratory
文摘This paper investigates the channel diversity problem in high frequency(HF) communication systems. Due to the limited HF spectrum resources, a HF communication system with shared channels is considered, where each user equipment(UE) has individual communication demand. In order to maximize the communication probability of the whole system, a matching-potential game framework is designed. In detail, the channel diversity problem is decomposed into two sub-problems. One is channel-transmitter matching problem, which can be formulated as a many-to-one matching game. The other is the transmitter allocation problem which decides the transmission object that each transmitter communicates with under channel-transmitter matching result, and this sub-problem can be modeled as a potential game. A multiple round stable matching algorithm(MRSMA) is proposed, which obtains a stable matching result for the first sub-problem, and a distributed BR-based transmitter allocation algorithm(DBRTAA) is designed to reach Nash Equilibrium(NE) of the second sub-problem. Simulation results verify the effectiveness and superiority of the proposed method.
基金sponsored by National Natural Science Foundation of China (No.91538104,No.91438205)China Postdoctoral Science Foundation (No.2011M500664)
文摘In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.
基金the financial and logistical support of the Ity Mining Company(SMI).
文摘On the Cavally River, located on the border between C?te d’Ivoire and Liberia, several hydraulic structures such as bridges and diversion channels are planned to be made in recent years in the operating perimeter of the Ity mining company. A 1D-2D hydraulic model was developed to design a diversion channel to cut a meander of the Cavally River in order to ensure hydraulic operation similar to the initial conditions of the river (water levels, flow and velocities). This model was designed with a flow rate of 240 m3/s and a Manning coefficient of 0.052 m1/3·s-1 for the minor bed and 0.06 m1/3·s-1 for the major bed. The results from the hydraulic model show that the hydraulic conditions (water levels, velocities) in the channel before and after the diversion remain almost like those of the Cavally River.
基金Project supported by the National Natural Science Foundation of China (Grant No.50469002).
文摘With the Tanghe Diversion Channel in Tibet as an example, the theoretical study on the ice control effect of the solar sacks was conducted based on the previous study. The numerical simulation method was adopted and a one-dimensional numerical model for ice crystal in diversion channels in high-altitude cold regions was developed in this article. The heat transfer through the air-water interface and the mass transfer between ice and water were considered in the model. The model was validated by the field observation data on the diversion channel of the Tanghe Hydropower Station. The results show that the ice control effect of the solar sacks is obvious in the channel with large mass flow rate in the high-altitude cold regions.
基金supported by the National Science Foundation for Innovative Research Group (No. 51121003)the Open Research Fund Program of Key Laboratory of Urban Stormwater System and Water Environment (BUCEA)+1 种基金the National Science Foundation of China (No. 51278054)the FST Short Term PD & VF Scheme 2013 and MYRG072(Y1-L2)-FST13-LIC from University of Macao
文摘The high population and concrete environment alter urban areas by changing temperature, rainfall runoff, and water resource utilization activities. This study was conducted to investigate the water quality features of the Yongding Diversion Channel in Beijing, China, and its relationship with rainfall and urban development. Monthly water quality data were obtained from April to October of 2004 at monitoring sites of Sanjiadian, Gaojing, Luodaozhuang, and Yuyuangtan. The monthly water quality grades from 2007 to 2011 were also investigated and compared with those of other rivers. Dissolved oxygen and pH showed greater decreases after one or two moderate rainfall events than several light rainfall events. The potassium permanganate index (CODMn), ammonia nitrogen (NH3-N) and total phosphorus (TP) increased more after several light rainfall events than after one or two moderate or heavy rainfall events. Pollutant concentrations (CODMn, NH3-N, TP) in downstream regions showed greater changes than those in upstream areas after heavy rainfall events. Intense human activities around the channel greatly influenced the water quality of the channel in rainy season because of runoff pollution; however, heavy rainfall had a strong dilution effect on the pollutant concentrations in rivers. Overall, urban development has obviously deteriorated the water quality of the Yongding Diversion Channel as indicated by an increase in the water quality index from 3.22 in 2008 to 4.55 in 2010. The Pearson correlation between monthly rainfall and water quality indices from 2007 to 2011 ranged from 0.1286 to 0.6968, generally becoming weaker as rainfall and rainfall runoff became more random and extreme.
基金Project supported by the National Natural Science Foun-dation of China(Grant No.51279137)
文摘The river closure is a key step in the water dam construction, and the end-dump closure is a general way to cut offthe river flow. The hydraulic characteristics at the closure gap are the main factors which affect the extent of closure difficulty. A method is proposed to reduce the difficulty of diversion channel closure by pre-building a closure structure called the backwater-sill at the downstream toe of the closure gap to change the flow pattern at the closure gap. The results of the physical model test and the three- dimensional numerical simulation indicate that the backwater-sill has the effects of raising the water level at the downstream toe of the closure gap, decreasing the water surface gradient, and reducing the closure drop and the flow velocity at the closure gap. The schemes with different dike widths, different closure gap widths, and different backwater-sill widths and heights are simulated. The results show that the height of the backwater-sill is the key factor affecting the hydro-indicators at the closure gap, while the influe- nce of the dike width, the closure gap width or the backwater-sill width can be ignored. The higher the backwater-sill is, the lower the hydro-indicators will be. Based on the numerical simulations and the physical model tests on the hydraulic characteristics at the closure gap of the backwater-sill assisted closure, the hydro-indicators and its calculation method are proposed to provide a theoreti- cal support for the river closure.
文摘This paper considers the design of a low-complexity and high-performance precoder for multiple-input multiple-output(MIMO)systems.The precoder is designed by combining both nonlinear and non-iterative processing strategies.The proposed nonlin-ear precoding techniques employ a nonlinear constellation precoding technique based on maximum distance sepa-rable codes at the transmitter.We propose to reduce the computational complexity in iterative-based precoding algorithms by using less complex non-iterative singular value decomposition-based joint precoder and decoder pair design.The maximum likelihood detection for the lin-ear MIMO channel is considered.The simulation results showed that the proposed nonlinear and non-iterative precoding schemes outperform the conventional linear MIMO precoder design,even when a reduced-complexity suboptimal strategy is adopted,considering the bit error rate performance.