Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the sam...Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the same bandwidth efficiency in this paper. We also propose some optimum low rate space time trellis codes in quasi static Rayleigh fading chan ̄nel. Performance analysis and simulation show that the low rate space time trellis codes outperform space time transmit diversity at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system which has no strict requirement on bandwidth efficiency.展开更多
An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing s...An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.展开更多
In this paper, a time-switched space-time (TSST) coded orthogonal frequency division nmltiplexing (OFDM) scheme against the time-varying channels is proposed. In the TSST-OFDM scheme, it is equipped with four tran...In this paper, a time-switched space-time (TSST) coded orthogonal frequency division nmltiplexing (OFDM) scheme against the time-varying channels is proposed. In the TSST-OFDM scheme, it is equipped with four transmit antennas, but only double of them are used for coding in every time slot. It is shown that the signal to inter-antenna interference ratio is a function of Doppler frequency in time-varying channels for a given space-time code. The analyses and simulations results validate that the proposed scheme not only gets time- switched diversity and lower decoding complexity, but also suffers less time-varying impairments. Hence, it ex- hibits better performance than quasi-orthogonal space-time coded scheme.展开更多
In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes exten...In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.展开更多
To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exp...To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exploits adaptive bit allocation scheme over multipath fading channel. Numerical simulations have shown that the proposed scheme can greatly improve the performance of non-adaptive STBC-OFDM system.展开更多
Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and...Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.展开更多
It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventual...It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.展开更多
In this paper, we introduce an efficient space-time coding scheme for time dispersive Multiple-Input Multiple-Output (MIMO) channels. Channel layering and Orthogonal Frequency Division Multiplexing (OFDM) technique ar...In this paper, we introduce an efficient space-time coding scheme for time dispersive Multiple-Input Multiple-Output (MIMO) channels. Channel layering and Orthogonal Frequency Division Multiplexing (OFDM) technique are used in the proposed scheme. The proposed scheme is based on maximizing the distance between any two codewords. This is done by inserting an optimized phase shifts between the symbols in the same layer and between different layers. This way leads to the increase of the achieved diversity and coding gains. As a result, the performance of the system will be improved. Simulation results show the efficiency of the proposed scheme compared to the conventional schemes.展开更多
Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime b...Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.展开更多
In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (a...In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (also called beam pattern oscillation), controlled time varying weight vectors are applied to the antenna array elements mounted at the base station (BS). This creates a small movement in the antenna array pattern directed toward the desired user. In rich scattering environments, this small beam pattern movement creates an artificial fast fading channel. The receiver is designed to exploit time diversity benefits of the fast fading channel. Via the application of simple combining techniques, BPS improves the probability-of-error performance and network capacity with minimal cost and complexity. In this work, to highlight the potential of the BPS, we compare BPS and Space-Time Coding (i.e., STBC and STTC) schemes. The comparisons are in terms of their complexity, system physical dimension, network capacity, probability-of-error performance, and spectrum efficiency. It is shown that BPS leads to higher network capacity and performance with a smaller antenna dimension and complexity with minimal loss in spectrum efficiency. This identifies BPS as a promising scheme for future wireless communications with smart antennas.展开更多
The conventional orthogonal space-time block code (OSTBC) with limited feedback has fixed p-1?feedback bits for the specific ntp?transmit antennas. A new partial feedback based OSTBC which provides flexible feedback b...The conventional orthogonal space-time block code (OSTBC) with limited feedback has fixed p-1?feedback bits for the specific ntp?transmit antennas. A new partial feedback based OSTBC which provides flexible feedback bits is proposed in this paper. The proposed scheme inherits the properties of having a simple decoder and the full diversity of OSTBC, moreover, preserves full data rate. Simulation results show that for?ntp transmit antennas, the proposed scheme has the similar performance with the conventional one by using p-1?feedback bits, whereas has the better performance with more feedback bits.展开更多
In this work, we observe the behavior of block space-time code in wireless channel dynamics. The block space-time code is optimally constructed in slow fading. The block code in quasistatic fading channels provides af...In this work, we observe the behavior of block space-time code in wireless channel dynamics. The block space-time code is optimally constructed in slow fading. The block code in quasistatic fading channels provides affordable complexity in design and construction. Our results show that the performance of the block space-time code may not be as good as conventionally convolutional coding with serial transmission for some channel features. As channel approaches fast fading, a coded single antenna scheme can collect as much diversity as desired by correctly choosing the free distance of code. The results also point to the need for robust space-time code in dynamic wireless fading channels. We expect that self-encoded spread spec-trum with block space-time code will provide a robust performance in dynamic wireless fading channels.展开更多
We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed b...We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.展开更多
Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by ser...Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.展开更多
In recent years, MIMO technology has emerged as one of the technical breakthroughs in the field of wireless communications. Two famous MIMO techniques have become investigated thoroughly throughout the literature;Spat...In recent years, MIMO technology has emerged as one of the technical breakthroughs in the field of wireless communications. Two famous MIMO techniques have become investigated thoroughly throughout the literature;Spatial Multiplexing, and Space Time Block Coding. On one hand, Spatial Multiplexing offers high data rates. On the other hand, Space Time Block Coding presents transmission fidelity. This imposes a fundamental tradeoff between capacity and reliability. Adaptive MIMO Switching schemes have been proposed to select the MIMO scheme that best fits the channel conditions. However, the switching schemes presented in the literature directly switch between the MIMO endpoints. In this paper, an adaptive MIMO system that incrementally switches from multiplexing towards diversity is proposed. The proposed scheme is referred to as incremental diversity and can be set to operate in two different modes;Rate-Adaptive, and Energy-Conservative Incremental Diversity. Results indicate that the proposed incremental diversity framework achieves transmission reliability offered by MIMO diversity, while maintaining a gradual increase in spectral efficiency (in the Rate-Adaptive mode) or a reduction in required number of received symbols (in the Energy-Conservative mode) with increase in the SNR.展开更多
Improving power distribution characteristics of space time block codes(STBCs),namely peak to average power ratio(PAPR),average to minimum power ratio(Ave/min),and probability of transmitting"zero"by antenna,...Improving power distribution characteristics of space time block codes(STBCs),namely peak to average power ratio(PAPR),average to minimum power ratio(Ave/min),and probability of transmitting"zero"by antenna,makes easier their practical implementation.To this end,this study proposes to multiply full diversity STB C with a non-singular matrix in multiple input multiple output(MIMO)or multiple input single output(MISO)systems with linear or maximum likelihood(ML)receivers.It is proved that the obtained code achieves full diversity and the order of detection complexity does not change.The proposed method is applied to different types of STBCs.The bit error rate(BER)and power distribution characteristics of the new codes demonstrate the superiority of the introduced method.Further,lower and upper bounds on the BER of the obtained STBCs are derived for all receivers.The proposed method provides trade-off among PAPR,spectral efficiency,energy efficiency,and BER.展开更多
Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(...Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.展开更多
Many common multimedia signal processing, including cropping, filtering, and perceptual coding, make watermark signal fading-like modification. A scheme that applies transmit diversity technique to improve robustness ...Many common multimedia signal processing, including cropping, filtering, and perceptual coding, make watermark signal fading-like modification. A scheme that applies transmit diversity technique to improve robustness of digital watermarking is presented. First, the scheme decomposes the original image using wavelet pyramid algorithm and chooses the middle-frequency band for transmission channel that the watermark will be embedded into. Then the watermark is pseudo-randomly permuted. The scheme makes use of space-time coding and differential detection technique to embed and extract watermark. The extracting process has access to neither the original image nor channel state information. Experimental results demonstrate that the scheme improves the performance of robust watermarking.展开更多
This paper deals with channel estimation for orthogonal frequency-division multiplexing (OFDM) systems with transmit diversity. Space time coded OFDM systems, which can provide transmit diversity, require perfect chan...This paper deals with channel estimation for orthogonal frequency-division multiplexing (OFDM) systems with transmit diversity. Space time coded OFDM systems, which can provide transmit diversity, require perfect channel estimation to improve communication quality. In actual OFDM systems, training sequences are usually used for channel estimation. The authors propose a training based channel estimation strategy suitable for space time coded OFDM systems. This novel strategy provides enhanced performance, high spectrum efficiency and relatively low computation complexity.展开更多
文摘Space time coding can provide high data rate and performance gain for wireless communication system. Performance comparison of space time trellis codes and space time transmit diversity is carried out under the same bandwidth efficiency in this paper. We also propose some optimum low rate space time trellis codes in quasi static Rayleigh fading chan ̄nel. Performance analysis and simulation show that the low rate space time trellis codes outperform space time transmit diversity at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system which has no strict requirement on bandwidth efficiency.
基金supported by the State Key Laboratory for Mobile Communication Open Foundation(N200502)the Natural Science Foundation of Jiangsu Province(BK2007192).
文摘An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.
基金Sponsored by the Science and Technology Project of Dalian,China (Grant No. 2011J21DW009)
文摘In this paper, a time-switched space-time (TSST) coded orthogonal frequency division nmltiplexing (OFDM) scheme against the time-varying channels is proposed. In the TSST-OFDM scheme, it is equipped with four transmit antennas, but only double of them are used for coding in every time slot. It is shown that the signal to inter-antenna interference ratio is a function of Doppler frequency in time-varying channels for a given space-time code. The analyses and simulations results validate that the proposed scheme not only gets time- switched diversity and lower decoding complexity, but also suffers less time-varying impairments. Hence, it ex- hibits better performance than quasi-orthogonal space-time coded scheme.
文摘In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.
文摘To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exploits adaptive bit allocation scheme over multipath fading channel. Numerical simulations have shown that the proposed scheme can greatly improve the performance of non-adaptive STBC-OFDM system.
文摘Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.
文摘It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.
文摘In this paper, we introduce an efficient space-time coding scheme for time dispersive Multiple-Input Multiple-Output (MIMO) channels. Channel layering and Orthogonal Frequency Division Multiplexing (OFDM) technique are used in the proposed scheme. The proposed scheme is based on maximizing the distance between any two codewords. This is done by inserting an optimized phase shifts between the symbols in the same layer and between different layers. This way leads to the increase of the achieved diversity and coding gains. As a result, the performance of the system will be improved. Simulation results show the efficiency of the proposed scheme compared to the conventional schemes.
基金This project was supported by the National Science Foundation of China (60496314)
文摘Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.
文摘In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (also called beam pattern oscillation), controlled time varying weight vectors are applied to the antenna array elements mounted at the base station (BS). This creates a small movement in the antenna array pattern directed toward the desired user. In rich scattering environments, this small beam pattern movement creates an artificial fast fading channel. The receiver is designed to exploit time diversity benefits of the fast fading channel. Via the application of simple combining techniques, BPS improves the probability-of-error performance and network capacity with minimal cost and complexity. In this work, to highlight the potential of the BPS, we compare BPS and Space-Time Coding (i.e., STBC and STTC) schemes. The comparisons are in terms of their complexity, system physical dimension, network capacity, probability-of-error performance, and spectrum efficiency. It is shown that BPS leads to higher network capacity and performance with a smaller antenna dimension and complexity with minimal loss in spectrum efficiency. This identifies BPS as a promising scheme for future wireless communications with smart antennas.
文摘The conventional orthogonal space-time block code (OSTBC) with limited feedback has fixed p-1?feedback bits for the specific ntp?transmit antennas. A new partial feedback based OSTBC which provides flexible feedback bits is proposed in this paper. The proposed scheme inherits the properties of having a simple decoder and the full diversity of OSTBC, moreover, preserves full data rate. Simulation results show that for?ntp transmit antennas, the proposed scheme has the similar performance with the conventional one by using p-1?feedback bits, whereas has the better performance with more feedback bits.
文摘In this work, we observe the behavior of block space-time code in wireless channel dynamics. The block space-time code is optimally constructed in slow fading. The block code in quasistatic fading channels provides affordable complexity in design and construction. Our results show that the performance of the block space-time code may not be as good as conventionally convolutional coding with serial transmission for some channel features. As channel approaches fast fading, a coded single antenna scheme can collect as much diversity as desired by correctly choosing the free distance of code. The results also point to the need for robust space-time code in dynamic wireless fading channels. We expect that self-encoded spread spec-trum with block space-time code will provide a robust performance in dynamic wireless fading channels.
文摘We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.
基金supported by the National Natural Science Foundation of China (Grant Nos.60332030, 60572157), and the National High-TechnologY Research and Development of China (Grant No.863-2003AA123310)
文摘Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.
文摘In recent years, MIMO technology has emerged as one of the technical breakthroughs in the field of wireless communications. Two famous MIMO techniques have become investigated thoroughly throughout the literature;Spatial Multiplexing, and Space Time Block Coding. On one hand, Spatial Multiplexing offers high data rates. On the other hand, Space Time Block Coding presents transmission fidelity. This imposes a fundamental tradeoff between capacity and reliability. Adaptive MIMO Switching schemes have been proposed to select the MIMO scheme that best fits the channel conditions. However, the switching schemes presented in the literature directly switch between the MIMO endpoints. In this paper, an adaptive MIMO system that incrementally switches from multiplexing towards diversity is proposed. The proposed scheme is referred to as incremental diversity and can be set to operate in two different modes;Rate-Adaptive, and Energy-Conservative Incremental Diversity. Results indicate that the proposed incremental diversity framework achieves transmission reliability offered by MIMO diversity, while maintaining a gradual increase in spectral efficiency (in the Rate-Adaptive mode) or a reduction in required number of received symbols (in the Energy-Conservative mode) with increase in the SNR.
基金supported by Iran National Science Foundation(INSF)under grant number 93018647。
文摘Improving power distribution characteristics of space time block codes(STBCs),namely peak to average power ratio(PAPR),average to minimum power ratio(Ave/min),and probability of transmitting"zero"by antenna,makes easier their practical implementation.To this end,this study proposes to multiply full diversity STB C with a non-singular matrix in multiple input multiple output(MIMO)or multiple input single output(MISO)systems with linear or maximum likelihood(ML)receivers.It is proved that the obtained code achieves full diversity and the order of detection complexity does not change.The proposed method is applied to different types of STBCs.The bit error rate(BER)and power distribution characteristics of the new codes demonstrate the superiority of the introduced method.Further,lower and upper bounds on the BER of the obtained STBCs are derived for all receivers.The proposed method provides trade-off among PAPR,spectral efficiency,energy efficiency,and BER.
基金support of the U.S. National Science Foundation (awards 8206992, 8906869, 9405933, 9909947, 0948585 to S.P. Hubbell)the John D. and Catherine D. McArthur Foundation+1 种基金the Smithsonian Tropical Research Institutesupported by research grant #7738 from the Natural Sciences and Engineering Research Council of Canada (NSERC) to P. Legendre
文摘Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.
基金This project was supported by the National Natural Science Foundation of China(60072041).
文摘Many common multimedia signal processing, including cropping, filtering, and perceptual coding, make watermark signal fading-like modification. A scheme that applies transmit diversity technique to improve robustness of digital watermarking is presented. First, the scheme decomposes the original image using wavelet pyramid algorithm and chooses the middle-frequency band for transmission channel that the watermark will be embedded into. Then the watermark is pseudo-randomly permuted. The scheme makes use of space-time coding and differential detection technique to embed and extract watermark. The extracting process has access to neither the original image nor channel state information. Experimental results demonstrate that the scheme improves the performance of robust watermarking.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA123310) and the National Natural Science Foundation of China (No. 60332030)
文摘This paper deals with channel estimation for orthogonal frequency-division multiplexing (OFDM) systems with transmit diversity. Space time coded OFDM systems, which can provide transmit diversity, require perfect channel estimation to improve communication quality. In actual OFDM systems, training sequences are usually used for channel estimation. The authors propose a training based channel estimation strategy suitable for space time coded OFDM systems. This novel strategy provides enhanced performance, high spectrum efficiency and relatively low computation complexity.