Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
[ Objective] The paper was to study the contact toxicity and antifeedant activity of Aconitum flavum against cabbage worm. [ Method ] In- sect dipping method was adopted to determine the contact toxicity of the extrac...[ Objective] The paper was to study the contact toxicity and antifeedant activity of Aconitum flavum against cabbage worm. [ Method ] In- sect dipping method was adopted to determine the contact toxicity of the extracts of A. fiavum extracted from five polar solvents including ethanol, petroleum ether, ether, ethyl acetate, n-butanol and water; leaf dish method was adopted to determine the antifeedant activities of five solvent ex- tracts including ethanol, petroleum ether, ether, ethyl acetate, n-butanol and water against cabbage worm, [ Result] Extracts of A. flavum had high contact toxicity against cabbage worm. When the concentration was 100.00 mg/ml, the corrected mortality at 48 h roached 97.24%, and the insec- ticidal activities of five solvent extracts against cabbage worm in sequence were water 〉 n-butanol 〉 ethyl acetate 〉 ether 〉 petroleum ether, the cor- rected mortality of water extract at 48 h was 95.87% ; the antifeedant activities of five solvent extracts in sequence were water 〉 n-butanol 〉 ethyl ac- etate 〉 ether 〉 petroleum ether. [ Conclusion] Extracts of A. flavum had strong contact toxicity and antifeedant activity against cabbage worm, and the active ingredients with contact toxicity and antifeedant activity might be a kind of polar compound.展开更多
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
基金Supported by Scientific and Technological Projects of Ningxia Hui Autonomous Region(2008220)~~
文摘[ Objective] The paper was to study the contact toxicity and antifeedant activity of Aconitum flavum against cabbage worm. [ Method ] In- sect dipping method was adopted to determine the contact toxicity of the extracts of A. fiavum extracted from five polar solvents including ethanol, petroleum ether, ether, ethyl acetate, n-butanol and water; leaf dish method was adopted to determine the antifeedant activities of five solvent ex- tracts including ethanol, petroleum ether, ether, ethyl acetate, n-butanol and water against cabbage worm, [ Result] Extracts of A. flavum had high contact toxicity against cabbage worm. When the concentration was 100.00 mg/ml, the corrected mortality at 48 h roached 97.24%, and the insec- ticidal activities of five solvent extracts against cabbage worm in sequence were water 〉 n-butanol 〉 ethyl acetate 〉 ether 〉 petroleum ether, the cor- rected mortality of water extract at 48 h was 95.87% ; the antifeedant activities of five solvent extracts in sequence were water 〉 n-butanol 〉 ethyl ac- etate 〉 ether 〉 petroleum ether. [ Conclusion] Extracts of A. flavum had strong contact toxicity and antifeedant activity against cabbage worm, and the active ingredients with contact toxicity and antifeedant activity might be a kind of polar compound.