With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,...With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
In this paper a simple code has been developed to analyze power balance and qualitatively evaluate current profiles for discharges with lower hybrid current drive (LHCD) and ion Bernstein wave (IBW) heating in the...In this paper a simple code has been developed to analyze power balance and qualitatively evaluate current profiles for discharges with lower hybrid current drive (LHCD) and ion Bernstein wave (IBW) heating in the HT-7 tokamak. Electron and ion thermal diffusivity, profiles of the bootstrap current density and total plasma current density can be estimated by this code using the experimental data. This code offers an easy and reasonable means to understand plasma transport in HT-7.展开更多
The article gives an overview on the dynamic political processes in the Black Sea region after some major geostrategic changes posing instability concerns in the region. The aim is to summarise the policy tendencies o...The article gives an overview on the dynamic political processes in the Black Sea region after some major geostrategic changes posing instability concerns in the region. The aim is to summarise the policy tendencies of the international organisations (NATO and EU) towards Russia and to present some analytical thoughts on current Euro-Atlantic strategies. Proposed is a different way of thinking based on the "congagement" approach.展开更多
In this paper,massive state-of-theart planar power dividers are presented and discussed. The innovations of these superiorly-performanced power dividers lie in the performance breakthrough,physical configurations and ...In this paper,massive state-of-theart planar power dividers are presented and discussed. The innovations of these superiorly-performanced power dividers lie in the performance breakthrough,physical configurations and function integrations. Eventually,based on the trend presented,the future of the power dividers is predicted. This paper might have inspiration significance to illuminate the way for the development of power dividers.展开更多
This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a sing...This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.展开更多
Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which...Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%-90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. The power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magnetic configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.展开更多
An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change...An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.展开更多
In South Africa, electricity is supplied through thousands-of-kilometers of overhead power cables, which is owned by Eskom the national energy supplier. Currently monitoring of these overhead power cables are done by ...In South Africa, electricity is supplied through thousands-of-kilometers of overhead power cables, which is owned by Eskom the national energy supplier. Currently monitoring of these overhead power cables are done by means of helicopter inspection flights and foot patrols, which are infrequent and expensive. In this paper, the authors present the design of a prototype power line crawler (inspection robot) for the monitoring of these overhead power lines in South Africa. The designed prototype power line crawler is capable of driving on the wire, balancing on the wire and is capable of maneuvering past certain obstacles found on the overhead power cables. The prototype power line crawler is designed to host a monitoring system that monitors the power line as the inspection robot drives on it. Various experimental tests were performed and are presented in this paper, showing the capability of performing these tasks. This prototype inspection robot ensures a platform for future development in this area.展开更多
The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV volta...The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.展开更多
Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mine...Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mined to verify that electrical energy flowing in its railway power feeding system is appropriate or not. Gauss-Seidel, conventional Newton-Raphson, and current injection methods are well-known and widely accepted as a tool for electrical power network solver in DC railway power supply study. In this paper, a simplified Newton-Raphson method has been proposed. The proposed method employs a set of current-balance equations at each electrical node instead of the conventional power-balance equation used in the conventional Newton-Raphson method. This concept can remarkably reduce execution time and computing complexity for multi-train simulation. To evaluate its use, Sukhumvit line of Bangkok transit system (BTS) of Thai- land with 21.6-km line length and 22 passenger stopping stations is set as a test system. The multi-train simulation integrated with the proposed power network solver is developed to simulate 1-h operation service of selected 5-min headway. From the obtained results, the proposed method is more efficient with approximately 18 % faster than the conventional Newton-Raphson method and just over 6 % faster than the current injection method.展开更多
The research reported in this paper focuses on non-technical power loss reduction for power distribution systems. Such reduction of costs of energy not served (ENS.COST), is intelligently evaluated and optimized using...The research reported in this paper focuses on non-technical power loss reduction for power distribution systems. Such reduction of costs of energy not served (ENS.COST), is intelligently evaluated and optimized using a firefly algorithm, from where savings of 43.3% on energy not served are achieved.展开更多
A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept...A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.展开更多
The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,...The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,renewable energy generation should be supplemented and enhanced,from real-time,minute-to-minute variations to annual alterations influencing long-termstrategy.Wind energy generation does not only fluctuate but is also challenging to accurately forecast the timeframes of significance to electricity decision makers;day-ahead and long-term making plans of framework sufficiency such as meeting the network peak load annually.A utility that integrates wind and solar energy into its electricity mix would understand how to adapt to uncertainty and variability in operations while sustaining grid stability.Due to hydropower’s adaptability,a system using hydropower as one of its generating resources could be precisely adapted to absorb the variability of wind and solar energy.The objective of this research study is to create a hybrid system comprising hydro-wind and solar(Hybrid-HWS)integration for power balancing in an isolated electrical network in Klipkop village,Pretoria region,South Africa.The desirability of designing and building goaf storage tank in regard to capability,the fullness of line throughoutwater pumping,dispensing,storage tank spillage,and pressure difference throughout liquid flow within the storage tanks were preliminary assessed using geotechnical and weather forecasting data from a distinctive area of Klipkop town in Pretoria,South Africa.Different facility hours premised on daylight accessibility are scheduled to balance maximum load at early and late hours.However,in the scenario of electrical power,time shift requiring storage for extended periods of time,such as in terms of hours,Hybrid-HWS has been found to have a crucial role.The results of simulations showed a coordinated process design for Hybrid-HWS Energy Storage(ES)to determine everyday strategic planning in reducing the variability of the system resulting from wind-solar-pumped hydro ES output inadequacies and satisfy daily load demands.It could be recommended that by considering the adaptability characteristics,extremely rapidly,ramping,peaking support and maximum stabilizing aid of the system could be archived with pump-hydro into the energy mix which can provide specific guidelines for energy policymakers.展开更多
Balance power control is based on the idea of balancing Carrier to Interference Ratio (CIR) of all wireless links. Unbalance power control means that different traffics can achieve different CIR at receivers. This pap...Balance power control is based on the idea of balancing Carrier to Interference Ratio (CIR) of all wireless links. Unbalance power control means that different traffics can achieve different CIR at receivers. This paper proposes a forward link partial-balance power control algorithm, which can provide necessary Quality of Service (QoS) for multimedia traffics in Wideband CDMA(W-CDMA) systems. The proposed algorithm is the integration of grading traffics priority and allocating and adjusting forward link power levels. For higher priority traffics, the unbalance power control is used. Whereas for lower priority traffics, balance power control is adopted. Computer simulation results show that the proposed algorithm can guarantee the special QoS requirements of the traffics with higher priority orders and maximize the CIR of the traffics with lower priority orders.展开更多
Mr. Luo Haocai taught at Peking University Law School for a long time. Even though he held such important positions as vice president of Peking University (PKU),chairman of the Central Committee of China Zhi Gong Part...Mr. Luo Haocai taught at Peking University Law School for a long time. Even though he held such important positions as vice president of Peking University (PKU),chairman of the Central Committee of China Zhi Gong Party, vice president of the Supreme People’s Court, and vice chairman of the Ninth and Tenth National Committee of the CPPCC, he preferred being called "Teacher Luo." My frequent interactions with Teacher Luo started in 2007 and continued to 2016 when he was the president of the CSHRS.展开更多
A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz cente...A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
基金supported by Science and Technology Project of State Grid Anhui Electric Power Co.,Ltd. (No.B6120922000A).
文摘With the increasing urgency of the carbon emission reduction task,the generation expansion planning process needs to add carbon emission risk constraints,in addition to considering the level of power adequacy.However,methods for quantifying and assessing carbon emissions and operational risks are lacking.It results in excessive carbon emissions and frequent load-shedding on some days,although meeting annual carbon emission reduction targets.First,in response to the above problems,carbon emission and power balance risk assessment indicators and assessment methods,were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios,considering power supply regulation and renewable energy fluctuation characteristics.Secondly,building on traditional two-tier models for low-carbon power planning,including investment decisions and operational simulations,considering carbon emissions and power balance risks in lower-tier operational simulations,a two-tier rolling model for thermal power retrofit and generation expansion planning was established.The model includes an investment tier and operation assessment tier and makes year-by-year decisions on the number of thermal power units to be retrofitted and the type and capacity of units to be commissioned.Finally,the rationality and validity of the model were verified through an example analysis,a small-scale power supply system in a certain region is taken as an example.The model can significantly reduce the number of days of carbon emissions risk and ensure that the power balance risk is within the safe limit.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
基金National Natural Science Foundation of China(No.10505008)
文摘In this paper a simple code has been developed to analyze power balance and qualitatively evaluate current profiles for discharges with lower hybrid current drive (LHCD) and ion Bernstein wave (IBW) heating in the HT-7 tokamak. Electron and ion thermal diffusivity, profiles of the bootstrap current density and total plasma current density can be estimated by this code using the experimental data. This code offers an easy and reasonable means to understand plasma transport in HT-7.
文摘The article gives an overview on the dynamic political processes in the Black Sea region after some major geostrategic changes posing instability concerns in the region. The aim is to summarise the policy tendencies of the international organisations (NATO and EU) towards Russia and to present some analytical thoughts on current Euro-Atlantic strategies. Proposed is a different way of thinking based on the "congagement" approach.
基金supported by National Basic Research Program of China(973 Program)(No.2014CB339900)National Natural Science Foundations of China(No.61422103,No.61671084,and No.61327806)
文摘In this paper,massive state-of-theart planar power dividers are presented and discussed. The innovations of these superiorly-performanced power dividers lie in the performance breakthrough,physical configurations and function integrations. Eventually,based on the trend presented,the future of the power dividers is predicted. This paper might have inspiration significance to illuminate the way for the development of power dividers.
文摘This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.
基金supported by Grant-in-Aid for JSPS Fellows(KAKENHI Grant Number 16H02441,24656559)performed with the support and under the auspices of the NIFS Collaboration Research Program(NIFS05KUTRO14,NIFS11KUTR061,NIFS13KUTR085,NIFS14KUTR103)+1 种基金supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu Universitypartly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(No.11261140328)
文摘Fully non-inductive plasma start-up was successfully achieved by using a well- controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3-5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%-90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. The power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magnetic configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.
文摘An intelligent power factor correction scheme is presented for three phase low power factor loads. This new scheme is able to perform individual phase sensing of parameters by monitoring at all times to sense a change in system parameters and affects individual phase correction by applying the exact amount of reactive components needed for each phase, and can also reduce negative sequence current caused by the load to improve system balance. An optimization criterion is used for the proper calculation of reactive power steps in a power compensation installation of capacitor banks. The criterion is enabled by sampling measurements performed on the electrical plant examined within specific interval of time.
文摘In South Africa, electricity is supplied through thousands-of-kilometers of overhead power cables, which is owned by Eskom the national energy supplier. Currently monitoring of these overhead power cables are done by means of helicopter inspection flights and foot patrols, which are infrequent and expensive. In this paper, the authors present the design of a prototype power line crawler (inspection robot) for the monitoring of these overhead power lines in South Africa. The designed prototype power line crawler is capable of driving on the wire, balancing on the wire and is capable of maneuvering past certain obstacles found on the overhead power cables. The prototype power line crawler is designed to host a monitoring system that monitors the power line as the inspection robot drives on it. Various experimental tests were performed and are presented in this paper, showing the capability of performing these tasks. This prototype inspection robot ensures a platform for future development in this area.
文摘The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.
文摘Multi-train modeling and simulation plays a vital role in railway electrification during operation and planning phase. Study of peak power demand and energy consumed by each traction substation needs to be deter- mined to verify that electrical energy flowing in its railway power feeding system is appropriate or not. Gauss-Seidel, conventional Newton-Raphson, and current injection methods are well-known and widely accepted as a tool for electrical power network solver in DC railway power supply study. In this paper, a simplified Newton-Raphson method has been proposed. The proposed method employs a set of current-balance equations at each electrical node instead of the conventional power-balance equation used in the conventional Newton-Raphson method. This concept can remarkably reduce execution time and computing complexity for multi-train simulation. To evaluate its use, Sukhumvit line of Bangkok transit system (BTS) of Thai- land with 21.6-km line length and 22 passenger stopping stations is set as a test system. The multi-train simulation integrated with the proposed power network solver is developed to simulate 1-h operation service of selected 5-min headway. From the obtained results, the proposed method is more efficient with approximately 18 % faster than the conventional Newton-Raphson method and just over 6 % faster than the current injection method.
文摘The research reported in this paper focuses on non-technical power loss reduction for power distribution systems. Such reduction of costs of energy not served (ENS.COST), is intelligently evaluated and optimized using a firefly algorithm, from where savings of 43.3% on energy not served are achieved.
文摘A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.
基金This study was supported by the DUT Scholarship Scheme Masters:2022(RFA Smart Grid)Funding.
文摘The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,renewable energy generation should be supplemented and enhanced,from real-time,minute-to-minute variations to annual alterations influencing long-termstrategy.Wind energy generation does not only fluctuate but is also challenging to accurately forecast the timeframes of significance to electricity decision makers;day-ahead and long-term making plans of framework sufficiency such as meeting the network peak load annually.A utility that integrates wind and solar energy into its electricity mix would understand how to adapt to uncertainty and variability in operations while sustaining grid stability.Due to hydropower’s adaptability,a system using hydropower as one of its generating resources could be precisely adapted to absorb the variability of wind and solar energy.The objective of this research study is to create a hybrid system comprising hydro-wind and solar(Hybrid-HWS)integration for power balancing in an isolated electrical network in Klipkop village,Pretoria region,South Africa.The desirability of designing and building goaf storage tank in regard to capability,the fullness of line throughoutwater pumping,dispensing,storage tank spillage,and pressure difference throughout liquid flow within the storage tanks were preliminary assessed using geotechnical and weather forecasting data from a distinctive area of Klipkop town in Pretoria,South Africa.Different facility hours premised on daylight accessibility are scheduled to balance maximum load at early and late hours.However,in the scenario of electrical power,time shift requiring storage for extended periods of time,such as in terms of hours,Hybrid-HWS has been found to have a crucial role.The results of simulations showed a coordinated process design for Hybrid-HWS Energy Storage(ES)to determine everyday strategic planning in reducing the variability of the system resulting from wind-solar-pumped hydro ES output inadequacies and satisfy daily load demands.It could be recommended that by considering the adaptability characteristics,extremely rapidly,ramping,peaking support and maximum stabilizing aid of the system could be archived with pump-hydro into the energy mix which can provide specific guidelines for energy policymakers.
文摘Balance power control is based on the idea of balancing Carrier to Interference Ratio (CIR) of all wireless links. Unbalance power control means that different traffics can achieve different CIR at receivers. This paper proposes a forward link partial-balance power control algorithm, which can provide necessary Quality of Service (QoS) for multimedia traffics in Wideband CDMA(W-CDMA) systems. The proposed algorithm is the integration of grading traffics priority and allocating and adjusting forward link power levels. For higher priority traffics, the unbalance power control is used. Whereas for lower priority traffics, balance power control is adopted. Computer simulation results show that the proposed algorithm can guarantee the special QoS requirements of the traffics with higher priority orders and maximize the CIR of the traffics with lower priority orders.
文摘Mr. Luo Haocai taught at Peking University Law School for a long time. Even though he held such important positions as vice president of Peking University (PKU),chairman of the Central Committee of China Zhi Gong Party, vice president of the Supreme People’s Court, and vice chairman of the Ninth and Tenth National Committee of the CPPCC, he preferred being called "Teacher Luo." My frequent interactions with Teacher Luo started in 2007 and continued to 2016 when he was the president of the CSHRS.
文摘A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.