Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robus...Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.展开更多
With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and int...With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.展开更多
The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which over...The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which overcomes the limitations of the IoT’s focus on associations between objects.Artificial Intelligence(AI)technology is rapidly evolving.It is critical to build trustworthy and transparent systems,especially with system security issues coming to the surface.This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT,aiming to build an SIoT hypergraph generation model to explore the complex interactions between entities in the context of intelligent SIoT.Current hypergraph generation models impose too many constraints and fail to capture more details of real hypernetworks.In contrast,this paper proposes a hypergraph generation model that evolves dynamically over time,where only the number of nodes is fixed.It combines node wandering with a forest fire model and uses two different methods to control the size of the hyperedges.As new nodes are added,the model can promptly reflect changes in entities and relationships within SIoT.Experimental results exhibit that our model can effectively replicate the topological structure of real-world hypernetworks.We also evaluate the vulnerability of the hypergraph under different attack strategies,which provides theoretical support for building a more robust intelligent SIoT hypergraph model and lays the foundation for building safer and more reliable systems in the future.展开更多
Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr...Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.展开更多
For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust op...For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust optimization model is constructed with both the center and halfwidth of the most important mechanical performance index described as objective functions and the other requirements on the mechanical performance indices described as constraint functions. To locate the optimal solution of objective and feasibility robustness, a new concept of interval violation vector and its calculation formulae corresponding to different constraint functions are proposed. The math?ematical formulae for calculating the feasibility and objective robustness indices and the robustness?based preferential guidelines are proposed for directly ranking various design vectors, which is realized by an algorithm integrating Kriging and nested genetic algorithm. The validity of the proposed method and its superiority to present interval optimization approaches are demonstrated by a numerical example. The robust optimization of the upper beam in a high?speed press with interval material properties demonstrated the applicability and effectiveness of the proposed method in engineering.展开更多
In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) H.264/AVC video. Using a fully controlled IP test bed (Hillestad et ...In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) H.264/AVC video. Using a fully controlled IP test bed (Hillestad et al., 2005), we broadcast high-definition video over RTP/UDP, and use an IP network emulator to introduce a varying amount of randomly distributed packet loss. A high-performance network interface monitoring card is used to capture the video packets into a trace file. Purpose-built software parses the trace file, analyzes the RTP stream and assembles the correctly received NAL units into an H.264/AVC Annex B byte stream file, which is subsequently decoded by JVT JM 10.1 reference software. The proposed measurement setup is a novel, practical and intuitive approach to perform error resilience testing of real-world H.264/AVC broadcast applications. Through a series of experiments, we evaluate some of the error resilience features of the H.264/AVC standard, and see how they perform at packet loss rates from 0.01% to 5%. The results confirmed that an appropriate slice partitioning scheme is essential to have a graceful degradation in received quality in the case of packet loss. While flexible macroblock ordering reduces the compression efficiency about 1 dB for our test material, reconstructed video quality is improved for loss rates above 0.25%.展开更多
Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, t...Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
The system portfolio selection is a fundamental frontier issue in the development planning and demonstration of weapon equipment.The scientific and reasonable development of the weapon system portfolio is of great sig...The system portfolio selection is a fundamental frontier issue in the development planning and demonstration of weapon equipment.The scientific and reasonable development of the weapon system portfolio is of great significance for optimizing the design of equipment architecture,realizing effective resource allocation,and increasing the campaign effectiveness of integrated joint operations.From the perspective of system-ofsystems,this paper proposes a unified framework called structure-oriented weapon system portfolio selection(SWSPS)to solve the weapon system portfolio selection problem based on structural invulnerability.First,the types of equipment and the relationship between the equipment are sorted out based on the operation loop theory,and a heterogeneous combat network model of the weapon equipment system is established by abstracting the equipment and their relationships into different types of nodes and edges respectively.Then,based on the combat network model,the operation loop comprehensive evaluation index(OLCEI)is introduced to quantitatively describe the structural robustness of the combat network.Next,a weapon system combination selection model is established with the goal of maximizing the operation loop comprehensive evaluation index within the constraints of capability requirements and budget limitations.Finally,our proposed SWSPS is demonstrated through a case study of an armored infantry battalion.The results show that our proposed SWSPS can achieve excellent performance in solving the weapon system portfolio selection problem,which yields many meaningful insights and guidance to the future equipment development planning.展开更多
Artificial Intelligence(AI)technology has been extensively researched in various fields,including the field of malware detection.AI models must be trustworthy to introduce AI systems into critical decisionmaking and r...Artificial Intelligence(AI)technology has been extensively researched in various fields,including the field of malware detection.AI models must be trustworthy to introduce AI systems into critical decisionmaking and resource protection roles.The problem of robustness to adversarial attacks is a significant barrier to trustworthy AI.Although various adversarial attack and defense methods are actively being studied,there is a lack of research on robustness evaluation metrics that serve as standards for determining whether AI models are safe and reliable against adversarial attacks.An AI model’s robustness level cannot be evaluated by traditional evaluation indicators such as accuracy and recall.Additional evaluation indicators are necessary to evaluate the robustness of AI models against adversarial attacks.In this paper,a Sophisticated Adversarial Robustness Score(SARS)is proposed for AI model robustness evaluation.SARS uses various factors in addition to the ratio of perturbated features and the size of perturbation to evaluate robustness accurately in the evaluation process.This evaluation indicator reflects aspects that are difficult to evaluate using traditional evaluation indicators.Moreover,the level of robustness can be evaluated by considering the difficulty of generating adversarial samples through adversarial attacks.This paper proposed using SARS,calculated based on adversarial attacks,to identify data groups with robustness vulnerability and improve robustness through adversarial training.Through SARS,it is possible to evaluate the level of robustness,which can help developers identify areas for improvement.To validate the proposed method,experiments were conducted using a malware dataset.Through adversarial training,it was confirmed that SARS increased by 70.59%,and the recall reduction rate improved by 64.96%.Through SARS,it is possible to evaluate whether an AI model is vulnerable to adversarial attacks and to identify vulnerable data types.In addition,it is expected that improved models can be achieved by improving resistance to adversarial attacks via methods such as adversarial training.展开更多
Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge...Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge challenge.Herein,a superhydrophobic multilayer coating integrated with multidimensional organic-inorganic components is designed on magnesium alloy via one-step plasma-induced thermal field assisted crosslinking deposition(PTCD)processing followed by after-thermal modification.Hard porous MgO ceramic layer and polytetrafluoroethylene(PTFE)nano-particles work as the bottom layer skeleton and filler components separately,forming an organic-inorganic multilayer structure,in which organic nano-particles can be crosslinked and cured to form a compact polymer-like outer layer with hierarchical surface textures.Remarkably,the chemical robustness after prolonged exposure to aqua regia,strong base and simulated seawater solution profits from polymer-like nanocomposite layer uniformly and compactly across the film bulk.Moreover,the self-similar multilayer structure coating endows it attractive functions of strong mechanical robustness(>100th cyclic rotary abrasion),stable and ultra-low friction coefficient(about 0.084),high-temperature endurance,and robust self-cleaning.The organic-inorganic multilayer coating also exhibits high insulating property with breakdown voltage of 1351.8±42.4 V,dielectric strength of 21.4±0.7 V/μm and resistivity of 3.2×10^(10)Ω·cm.The excellent multifunction benefits from ceramic bottom skeleton,the assembly and deposition of multidimensional nano-particles,and the synergistic effect of organic inorganic components.This study paves the way for designing next generation protective coating on magnesium alloy with great potential for multifunctional applications.展开更多
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com...Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.展开更多
A novel LDNMOS embedded silicon controlled rectifier(SCR) was proposed to enhance ESD robustness of high-voltage(HV) LDNMOS based on a 0.5 μm 18 V CDMOS process. A two-dimensional(2D) device simulation and a transmis...A novel LDNMOS embedded silicon controlled rectifier(SCR) was proposed to enhance ESD robustness of high-voltage(HV) LDNMOS based on a 0.5 μm 18 V CDMOS process. A two-dimensional(2D) device simulation and a transmission line pulse(TLP) testing were used to analyze the working mechanism and ESD performance of the novel device. Compared with the traditional GG-LDNMOS, the secondary breakdown current(It2) of the proposed device can successfully increase from 1.146 A to 3.169 A with a total width of 50 μm, and ESD current discharge efficiency is improved from 0.459 m A/μm2 to 1.884 m A/μm2. Moreover, due to their different turn-on resistances(Ron), the device with smaller channel length(L) owns a stronger ESD robustness per unit area.展开更多
In this paper, we conduct research on the high robustness JavaEE enterprise development mode based on Hadoop and cloud servers. The current virtual machine real-time migration can only achieve manual migration, and ca...In this paper, we conduct research on the high robustness JavaEE enterprise development mode based on Hadoop and cloud servers. The current virtual machine real-time migration can only achieve manual migration, and cannot achieve full-automatic migration. In other words, when the server overload requires the administrator to artificially select a low-load host, and then hit migration command to implement the migration. In recent years, the Hadoop is becoming popular, and the read performance of the data is measured in terms of the time overhead for reading the required data. The key to reducing read time is to optimize that Hadoop cloud data read time and the RDBMS data query time. This paper integrates the mentioned techniques to construct the novel JavaEE enterprise development pattern that will promote the further development of the related techniques.展开更多
In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy usi...In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy using error correction technology, but at present, a lot of errorcorrection is limited to the system error modifi cation, only a small number of the instruments to an error in the dynamic error correction timely,device on the instrument precision sensors, apparently complicate the instrument structure. To fully system error correction that will affect theprecision of instrument mainly random error. Instrument is the main task of error correction is to use a certain method to compensate separableinstruments each component part of a deterministic system error, so the key problems of error correction as is the requirement of equipmentstructure stability is good, with this to ensure that the instrument error of the uncertainty, so that the fundamental fl aw. Under this basis, this paperproposes the novel countermeasure of the issues that is innovative.展开更多
As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. I...As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. In this work, we propose a method that modifies any given network with strict structural perturbation to effectively enhance its robustness against malicious attacks, called dynamic optimization of controllability. Unlike other structural perturbations, the strict perturbation only swaps the links and keeps the in- and out-degree unchanged. A series of extensive experiments show that the robustness of controllability and connectivity can be improved dramatically. Furthermore, the effectiveness of our method is explained from the views of underlying structure. The analysis results indicate that the optimization algorithm makes networks more homogenous and assortative.展开更多
This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is design...This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.展开更多
This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explain...This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explained. The resultissignificantbecause the previous con- clusions are only applied to open-loop stable plant(orm odel).展开更多
In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system...In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system is BIBO stable in the presence of unmodelled dynamics.展开更多
基金partly supported by the National Natural Science Foundation of China(Jianhua Wu,Grant No.62041106).
文摘Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.
基金This work was supported by Natural Science Foundation of China(Nos.62303126,62362008,62066006,authors Zhenyong Zhang and Bin Hu,https://www.nsfc.gov.cn/,accessed on 25 July 2024)Guizhou Provincial Science and Technology Projects(No.ZK[2022]149,author Zhenyong Zhang,https://kjt.guizhou.gov.cn/,accessed on 25 July 2024)+1 种基金Guizhou Provincial Research Project(Youth)forUniversities(No.[2022]104,author Zhenyong Zhang,https://jyt.guizhou.gov.cn/,accessed on 25 July 2024)GZU Cultivation Project of NSFC(No.[2020]80,author Zhenyong Zhang,https://www.gzu.edu.cn/,accessed on 25 July 2024).
文摘With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.
文摘The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which overcomes the limitations of the IoT’s focus on associations between objects.Artificial Intelligence(AI)technology is rapidly evolving.It is critical to build trustworthy and transparent systems,especially with system security issues coming to the surface.This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT,aiming to build an SIoT hypergraph generation model to explore the complex interactions between entities in the context of intelligent SIoT.Current hypergraph generation models impose too many constraints and fail to capture more details of real hypernetworks.In contrast,this paper proposes a hypergraph generation model that evolves dynamically over time,where only the number of nodes is fixed.It combines node wandering with a forest fire model and uses two different methods to control the size of the hyperedges.As new nodes are added,the model can promptly reflect changes in entities and relationships within SIoT.Experimental results exhibit that our model can effectively replicate the topological structure of real-world hypernetworks.We also evaluate the vulnerability of the hypergraph under different attack strategies,which provides theoretical support for building a more robust intelligent SIoT hypergraph model and lays the foundation for building safer and more reliable systems in the future.
基金supported by the Chinese Scholarship Council(Nos.202208320055 and 202108320111)the support from the energy department of Aalborg University was acknowledged.
文摘Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775491,51475417,U1608256,51405433)
文摘For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust optimization model is constructed with both the center and halfwidth of the most important mechanical performance index described as objective functions and the other requirements on the mechanical performance indices described as constraint functions. To locate the optimal solution of objective and feasibility robustness, a new concept of interval violation vector and its calculation formulae corresponding to different constraint functions are proposed. The math?ematical formulae for calculating the feasibility and objective robustness indices and the robustness?based preferential guidelines are proposed for directly ranking various design vectors, which is realized by an algorithm integrating Kriging and nested genetic algorithm. The validity of the proposed method and its superiority to present interval optimization approaches are demonstrated by a numerical example. The robust optimization of the upper beam in a high?speed press with interval material properties demonstrated the applicability and effectiveness of the proposed method in engineering.
基金Project supported by the Research Council of Norway, Norwegian University of Science and Technology (NTNU), and the Norwegian Resarch Network (UNINETT)
文摘In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) H.264/AVC video. Using a fully controlled IP test bed (Hillestad et al., 2005), we broadcast high-definition video over RTP/UDP, and use an IP network emulator to introduce a varying amount of randomly distributed packet loss. A high-performance network interface monitoring card is used to capture the video packets into a trace file. Purpose-built software parses the trace file, analyzes the RTP stream and assembles the correctly received NAL units into an H.264/AVC Annex B byte stream file, which is subsequently decoded by JVT JM 10.1 reference software. The proposed measurement setup is a novel, practical and intuitive approach to perform error resilience testing of real-world H.264/AVC broadcast applications. Through a series of experiments, we evaluate some of the error resilience features of the H.264/AVC standard, and see how they perform at packet loss rates from 0.01% to 5%. The results confirmed that an appropriate slice partitioning scheme is essential to have a graceful degradation in received quality in the case of packet loss. While flexible macroblock ordering reduces the compression efficiency about 1 dB for our test material, reconstructed video quality is improved for loss rates above 0.25%.
基金Supported by the Open Cooperation Research in National University of Defense Technology(NUDT)under Grant No 2014021the Graduate Innovation Fund of NUDT under Grant No B150501
文摘Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
基金This work was supported by the National Natural Science Foundation of China(71690233,71971213,71571185)Scientific Research Foundation of National University of Defense Technology(ZK19-16).
文摘The system portfolio selection is a fundamental frontier issue in the development planning and demonstration of weapon equipment.The scientific and reasonable development of the weapon system portfolio is of great significance for optimizing the design of equipment architecture,realizing effective resource allocation,and increasing the campaign effectiveness of integrated joint operations.From the perspective of system-ofsystems,this paper proposes a unified framework called structure-oriented weapon system portfolio selection(SWSPS)to solve the weapon system portfolio selection problem based on structural invulnerability.First,the types of equipment and the relationship between the equipment are sorted out based on the operation loop theory,and a heterogeneous combat network model of the weapon equipment system is established by abstracting the equipment and their relationships into different types of nodes and edges respectively.Then,based on the combat network model,the operation loop comprehensive evaluation index(OLCEI)is introduced to quantitatively describe the structural robustness of the combat network.Next,a weapon system combination selection model is established with the goal of maximizing the operation loop comprehensive evaluation index within the constraints of capability requirements and budget limitations.Finally,our proposed SWSPS is demonstrated through a case study of an armored infantry battalion.The results show that our proposed SWSPS can achieve excellent performance in solving the weapon system portfolio selection problem,which yields many meaningful insights and guidance to the future equipment development planning.
基金supported by an Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korean Government (MSIT) (No.2022-0-00089,Development of Clustering and Analysis Technology to Identify Cyber-Attack Groups Based on Life-Cycle)and MISP (Ministry of Science,ICT&Future Planning),Korea,under the National Program for Excellence in SW (2019-0-01834)supervised by the IITP (Institute of Information&Communications Technology Planning&Evaluation) (2019-0-01834).
文摘Artificial Intelligence(AI)technology has been extensively researched in various fields,including the field of malware detection.AI models must be trustworthy to introduce AI systems into critical decisionmaking and resource protection roles.The problem of robustness to adversarial attacks is a significant barrier to trustworthy AI.Although various adversarial attack and defense methods are actively being studied,there is a lack of research on robustness evaluation metrics that serve as standards for determining whether AI models are safe and reliable against adversarial attacks.An AI model’s robustness level cannot be evaluated by traditional evaluation indicators such as accuracy and recall.Additional evaluation indicators are necessary to evaluate the robustness of AI models against adversarial attacks.In this paper,a Sophisticated Adversarial Robustness Score(SARS)is proposed for AI model robustness evaluation.SARS uses various factors in addition to the ratio of perturbated features and the size of perturbation to evaluate robustness accurately in the evaluation process.This evaluation indicator reflects aspects that are difficult to evaluate using traditional evaluation indicators.Moreover,the level of robustness can be evaluated by considering the difficulty of generating adversarial samples through adversarial attacks.This paper proposed using SARS,calculated based on adversarial attacks,to identify data groups with robustness vulnerability and improve robustness through adversarial training.Through SARS,it is possible to evaluate the level of robustness,which can help developers identify areas for improvement.To validate the proposed method,experiments were conducted using a malware dataset.Through adversarial training,it was confirmed that SARS increased by 70.59%,and the recall reduction rate improved by 64.96%.Through SARS,it is possible to evaluate whether an AI model is vulnerable to adversarial attacks and to identify vulnerable data types.In addition,it is expected that improved models can be achieved by improving resistance to adversarial attacks via methods such as adversarial training.
基金The partial supports from the NSFC grant nos.51571077 and 51621091National Basic Science Research Program(2012CB933900)+2 种基金Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(Lab ASP-2020-05)Aviation Science Foundation of China(NO.20163877014)the Fundamental Research Funds for the Central Universities(HIT.BRETIII.201202)。
文摘Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge challenge.Herein,a superhydrophobic multilayer coating integrated with multidimensional organic-inorganic components is designed on magnesium alloy via one-step plasma-induced thermal field assisted crosslinking deposition(PTCD)processing followed by after-thermal modification.Hard porous MgO ceramic layer and polytetrafluoroethylene(PTFE)nano-particles work as the bottom layer skeleton and filler components separately,forming an organic-inorganic multilayer structure,in which organic nano-particles can be crosslinked and cured to form a compact polymer-like outer layer with hierarchical surface textures.Remarkably,the chemical robustness after prolonged exposure to aqua regia,strong base and simulated seawater solution profits from polymer-like nanocomposite layer uniformly and compactly across the film bulk.Moreover,the self-similar multilayer structure coating endows it attractive functions of strong mechanical robustness(>100th cyclic rotary abrasion),stable and ultra-low friction coefficient(about 0.084),high-temperature endurance,and robust self-cleaning.The organic-inorganic multilayer coating also exhibits high insulating property with breakdown voltage of 1351.8±42.4 V,dielectric strength of 21.4±0.7 V/μm and resistivity of 3.2×10^(10)Ω·cm.The excellent multifunction benefits from ceramic bottom skeleton,the assembly and deposition of multidimensional nano-particles,and the synergistic effect of organic inorganic components.This study paves the way for designing next generation protective coating on magnesium alloy with great potential for multifunctional applications.
文摘Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.
基金Project(NCET-11-0975)supported by Program for New Century Excellent Talents in University of Ministry of Education of ChinaProjects(61233010,61274043)supported by the National Natural Science Foundation of China
文摘A novel LDNMOS embedded silicon controlled rectifier(SCR) was proposed to enhance ESD robustness of high-voltage(HV) LDNMOS based on a 0.5 μm 18 V CDMOS process. A two-dimensional(2D) device simulation and a transmission line pulse(TLP) testing were used to analyze the working mechanism and ESD performance of the novel device. Compared with the traditional GG-LDNMOS, the secondary breakdown current(It2) of the proposed device can successfully increase from 1.146 A to 3.169 A with a total width of 50 μm, and ESD current discharge efficiency is improved from 0.459 m A/μm2 to 1.884 m A/μm2. Moreover, due to their different turn-on resistances(Ron), the device with smaller channel length(L) owns a stronger ESD robustness per unit area.
文摘In this paper, we conduct research on the high robustness JavaEE enterprise development mode based on Hadoop and cloud servers. The current virtual machine real-time migration can only achieve manual migration, and cannot achieve full-automatic migration. In other words, when the server overload requires the administrator to artificially select a low-load host, and then hit migration command to implement the migration. In recent years, the Hadoop is becoming popular, and the read performance of the data is measured in terms of the time overhead for reading the required data. The key to reducing read time is to optimize that Hadoop cloud data read time and the RDBMS data query time. This paper integrates the mentioned techniques to construct the novel JavaEE enterprise development pattern that will promote the further development of the related techniques.
文摘In this paper, we conduct research on the large precision instrument error correction model under the perspectives of stability androbustness. It is one of the effective methods to improve the instruments accuracy using error correction technology, but at present, a lot of errorcorrection is limited to the system error modifi cation, only a small number of the instruments to an error in the dynamic error correction timely,device on the instrument precision sensors, apparently complicate the instrument structure. To fully system error correction that will affect theprecision of instrument mainly random error. Instrument is the main task of error correction is to use a certain method to compensate separableinstruments each component part of a deterministic system error, so the key problems of error correction as is the requirement of equipmentstructure stability is good, with this to ensure that the instrument error of the uncertainty, so that the fundamental fl aw. Under this basis, this paperproposes the novel countermeasure of the issues that is innovative.
基金supported by the National Natural Science Foundation of China(Grant No.60902094)the Military Science Foundation of China(Grant No.2010JY0072-046)
文摘As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. In this work, we propose a method that modifies any given network with strict structural perturbation to effectively enhance its robustness against malicious attacks, called dynamic optimization of controllability. Unlike other structural perturbations, the strict perturbation only swaps the links and keeps the in- and out-degree unchanged. A series of extensive experiments show that the robustness of controllability and connectivity can be improved dramatically. Furthermore, the effectiveness of our method is explained from the views of underlying structure. The analysis results indicate that the optimization algorithm makes networks more homogenous and assortative.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2007AA041603)National Natural Science Foundation of China (No. 60475035)+2 种基金Key Technologies Research and Development Program Foundation of Hunan Province of China (No. 2007FJ1806)Science and Technology Research Plan of National University of Defense Technology (No. CX07-03-01)Top Class Graduate Student Innovation Sustentation Fund of National University of Defense Technology (No. B070302.)
文摘This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.
文摘This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explained. The resultissignificantbecause the previous con- clusions are only applied to open-loop stable plant(orm odel).
文摘In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system is BIBO stable in the presence of unmodelled dynamics.