The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a sim...The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a simple ball-milling process. The doctor-bladed Cu2ZnSnS4 films are annealed in N2 ambient under various conditions and characterized by X-ray diffraction, ultraviolent/vis spectrophotometry, scanning electron microscopy, and current-voltage (J-V) meansurement. Our experimental results indicate that (i) the X-ray diffraction peaks of the Cu2ZnSnS4 precursor powder each show a red shift of about 0.4°; (ii) the high-temperature annealing process can effectively improve the crystallinity of the doctor-bladed Cu2ZnSnS4, whereas an overlong annealing introduces defects; (iii) the band gap value of the doctor-bladed Cu2ZnSnS4 is around 1.41 eV; (iv) the short-circuit current density, the open-circuit voltage, the fill factor, and the efficiency of the best Cu2ZnSnS4 solar cell obtained with the superstrate structure of fluorine-doped tin oxide glass/TiO2/In2S3/Cu2ZnSnS4/Mo are 7.82 mA/cm2, 240 mV, 0.29, and 0.55%, respectively.展开更多
Scalable deposition of high-efficiency perovskite solar cells(PSCs)is critical to accelerating their commercial applications.However,a significant number of defects are distributed at the buried interface of perovskit...Scalable deposition of high-efficiency perovskite solar cells(PSCs)is critical to accelerating their commercial applications.However,a significant number of defects are distributed at the buried interface of perovskite film fabricated by scalable deposition,exhibiting much negative influence on the efficiency and stability of PSCs.Herein,2-(N-morpholino)ethanesulfonic acid potassium salt(MESK)is incorporated as the bridging layer between the tin oxide(SnO_(2))electron transport layer(ETL)and the perovskite film deposited via scalable two-step doctor blading.Both experiment and simulation results demonstrate that MESK can passivate the trap states of Sn suspension bonds,thereby enhancing the charge extraction and transport of the SnO_(2)ETL.Meanwhile,the strong interaction with uncoordinated Pb ions can modulate the crystal growth and crystallographic orientation of perovskite film and passivate buried defects.With employing MESK interface bridging,PSCs fabricated via scalable doctor blading in ambient condition achieve a power conversion efficiency(PCE)of 24.67%,which is one of the highest PCEs for doctor-bladed PSCs,and PSC modules with an active area of 11.35 cm^(2)achieve a PCE of 19.45%.Furthermore,PSCs exhibit excellent long-term stability,and the unpackaged target device with a storage of 1680 h in ambient condition(25℃and humidity of 30%relative humidity(RH))can maintain more than 90%of the initial PCE.The research provides a strategy for constructing a high-performance interface bridge between SnO_(2)ETL and perovskite film,and achieving efficient and stable large-area PSCs and modules fabricated via scalable doctor-blading process in ambient condition.展开更多
By designing and fabricating thin film electronic devices on a flexible substrate instead of more commonly used rigid substrate, flexible electronics produced has opened a field of special applications. In this articl...By designing and fabricating thin film electronic devices on a flexible substrate instead of more commonly used rigid substrate, flexible electronics produced has opened a field of special applications. In this article, we first reviewed available products that may be used as flexible substrates, their characteristics and unique advantages as supporting material for flexible electronic devices. Secondly, flexible perovskite solar cell is examined in detail, with special focus on its potential large-scale fabrication processes. In particular, a comprehensive review is provided on low cost solution printing techniques that is viewed highly as a viable tool for potential commercialization of the perovskite solar cells. Furthermore, a summary is given on green processing for the solution printing production of flexible perovskite devices.展开更多
文摘The doctor-blade method is investigated for the preparation of Cu2ZnSnS4 films for low-cost solar cell application. Cu2ZnSnS4 precursor powder, the main raw material for the doctor-blade paste, is synthesized by a simple ball-milling process. The doctor-bladed Cu2ZnSnS4 films are annealed in N2 ambient under various conditions and characterized by X-ray diffraction, ultraviolent/vis spectrophotometry, scanning electron microscopy, and current-voltage (J-V) meansurement. Our experimental results indicate that (i) the X-ray diffraction peaks of the Cu2ZnSnS4 precursor powder each show a red shift of about 0.4°; (ii) the high-temperature annealing process can effectively improve the crystallinity of the doctor-bladed Cu2ZnSnS4, whereas an overlong annealing introduces defects; (iii) the band gap value of the doctor-bladed Cu2ZnSnS4 is around 1.41 eV; (iv) the short-circuit current density, the open-circuit voltage, the fill factor, and the efficiency of the best Cu2ZnSnS4 solar cell obtained with the superstrate structure of fluorine-doped tin oxide glass/TiO2/In2S3/Cu2ZnSnS4/Mo are 7.82 mA/cm2, 240 mV, 0.29, and 0.55%, respectively.
基金support from the National Natural Science Foundation of China(No.U23A20138)the National Key Research and Development Program of China(No.2022YFB3803300).
文摘Scalable deposition of high-efficiency perovskite solar cells(PSCs)is critical to accelerating their commercial applications.However,a significant number of defects are distributed at the buried interface of perovskite film fabricated by scalable deposition,exhibiting much negative influence on the efficiency and stability of PSCs.Herein,2-(N-morpholino)ethanesulfonic acid potassium salt(MESK)is incorporated as the bridging layer between the tin oxide(SnO_(2))electron transport layer(ETL)and the perovskite film deposited via scalable two-step doctor blading.Both experiment and simulation results demonstrate that MESK can passivate the trap states of Sn suspension bonds,thereby enhancing the charge extraction and transport of the SnO_(2)ETL.Meanwhile,the strong interaction with uncoordinated Pb ions can modulate the crystal growth and crystallographic orientation of perovskite film and passivate buried defects.With employing MESK interface bridging,PSCs fabricated via scalable doctor blading in ambient condition achieve a power conversion efficiency(PCE)of 24.67%,which is one of the highest PCEs for doctor-bladed PSCs,and PSC modules with an active area of 11.35 cm^(2)achieve a PCE of 19.45%.Furthermore,PSCs exhibit excellent long-term stability,and the unpackaged target device with a storage of 1680 h in ambient condition(25℃and humidity of 30%relative humidity(RH))can maintain more than 90%of the initial PCE.The research provides a strategy for constructing a high-performance interface bridge between SnO_(2)ETL and perovskite film,and achieving efficient and stable large-area PSCs and modules fabricated via scalable doctor-blading process in ambient condition.
基金the financial support of the National Key Research and Development Project funding from the Ministry of Science and Technology of China(Grants Nos.2016YFA0202400and 2016YFA0202404)the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee(Grant No.KQTD2015033110182370)
文摘By designing and fabricating thin film electronic devices on a flexible substrate instead of more commonly used rigid substrate, flexible electronics produced has opened a field of special applications. In this article, we first reviewed available products that may be used as flexible substrates, their characteristics and unique advantages as supporting material for flexible electronic devices. Secondly, flexible perovskite solar cell is examined in detail, with special focus on its potential large-scale fabrication processes. In particular, a comprehensive review is provided on low cost solution printing techniques that is viewed highly as a viable tool for potential commercialization of the perovskite solar cells. Furthermore, a summary is given on green processing for the solution printing production of flexible perovskite devices.