期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Genesis of Dolomite from Ma5^5-Ma5^10 Sub-members of the Ordovician Majiagou Formation in the Jingxi Area in the Ordos Basin 被引量:1
1
作者 LIU Jingdong JIANG Youlu +5 位作者 LIU Xinshe YANG Zhiwei HOU Xiangdong ZHU Rongwei WEN Caixia WANG Feiyan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1363-1379,共17页
We clarified three stages of dolomitization and secondary changes by studying the petrology and geochemistry characteristics of dolomite from the Ma5^5-Ma5^10 sub-members of the Ordovician Majiagou Formation in the Ji... We clarified three stages of dolomitization and secondary changes by studying the petrology and geochemistry characteristics of dolomite from the Ma5^5-Ma5^10 sub-members of the Ordovician Majiagou Formation in the Jingxi area in the Ordos Basin: (1) Syngenetic microbial dolomitization is characterized by formation of dolomite with a mainly micrite structure and horse tooth-shape dolomite cements. (2) Seepage reflux dolomitization during the penecontemporaneous period superposed adjustment functions such as recrystallization and stabilization in the middle-deep burial stage, forming dolomites mainly consisting of micro crystal and powder crystal structure. (3) Powder dolomite, fine dolomite, and medium-coarse crystalline dolomite formed in pores and fractures in the middle-deep burial stage. The secondary concussive transgression-regression under a regressive background is an important condition for the occurrence of many stages of dolomitization in the study area. The basin was an occlusive epicontinental sea environment in the Ma5 member of the Ordovician Majiagou Formation sedimentary period. In the sediments, sulfate content was high, which is conducive to the preservation of microbial activity and microbial dolomitization. Micritic dolomite formed by microbial dolomitization provides good migration pathways for seepage reflux dolomitization. Affected by evaporation seawater with increased Mg/Ca ratio, seepage reflux dolomitization was widely developed and formed large-scale dolomite, and underwater uplifts and slopes are favorable areas for dolomite. In the middle-deep burial stage, dolomitizing fluid in the stratum recrystallized or stabilized the previous dolomite and formed a small amount of euhedral dolomite in the pores and fractures. 展开更多
关键词 Ordos Basin ORDOVICIAN genesis of dolomite microbial dolomitization seepage reflux dolomitization burial dolomitization
下载PDF
Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin 被引量:7
2
作者 Guangyou ZHU Xi LI +4 位作者 Tingting LI Lei ZHOU Yuxuan WU Bing SHEN Meng NING 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第2期334-357,共24页
Dolomite genesis is a century-old mystery in sedimentology.To reveal the mechanism of dolomite genesis,two core problems need to be addressed.The first is the origin and migration mechanism of Mg^(2+)-rich fluids duri... Dolomite genesis is a century-old mystery in sedimentology.To reveal the mechanism of dolomite genesis,two core problems need to be addressed.The first is the origin and migration mechanism of Mg^(2+)-rich fluids during the dolomitization process.The second is the kinetic barrier caused by Mg^(2+)hydration during dolomite precipitation at low temperatures.To address these problems,our study,based on detailed petrological,sedimentological,geochemical(major and trace elements),and isotopic(C-O-Mg)analysis,clarified the source and migration of Mg^(2+)-rich fluids and the kinetic barrier mechanism of lowtemperature dolomite precipitation in the Upper Sinian Qigebulake Formation and the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin.First,we found that the Mg^(2+)-rich fluids required for the dolomitization of dolomite in the Xiaoerbulake Formation were primarily derived from the Early Cambrian marine fluid.At the interface of the sedimentary cycle,δ26Mg values fluctuated considerably,indicating that the sequence interface was the starting point and channel for the migration of dolomitized fluids.Sea level variation plays a major role in controlling the dolomitization process of the Xiaoerbulake Formation.Second,the Qigebulake Formation contains low-temperature dolomite with Mg^(2+)-rich fluids supplied by seawater,microorganisms,and sedimentary organic matter.Comprehensive analysis shows that the dolomite of the Qigebulake Formation was formed by microbial induction by anaerobic methane bacteria.Finally,the properties and sources of dolomitization fluids and the formation process of dolomite were the reasons for the difference in the Mg isotope composition of dolomite during the Sinian-Cambrian transition.This study reveals the genetic mechanism of the Sinian-Cambrian dolomite in the Tarim Basin and establishes a new method to explain the genesis of microbial dolomite by C-O-Mg isotopes,providing a reference for the reconstruction of the formation and evolution of dolomites. 展开更多
关键词 dolomite genesis Mg isotopes Carbon and Oxygen isotopes Xiaoerbulake Formation Qigebulake Formation Tarim Basin
原文传递
Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment 被引量:4
3
作者 SHEN Anjiang LUO Xianying +2 位作者 HU Anping QIAO Zhanfeng ZHANG Jie 《Petroleum Exploration and Development》 CSCD 2022年第4期731-743,共13页
Aiming at the scientific problem that only part of dolomite acts as dolomite reservoir,this paper takes the multiple dolomite-bearing formations in the Tarim and Ordos basins,NW China and Sichuan Basin,SW China as the... Aiming at the scientific problem that only part of dolomite acts as dolomite reservoir,this paper takes the multiple dolomite-bearing formations in the Tarim and Ordos basins,NW China and Sichuan Basin,SW China as the study object,by means of mineral petrological analysis and geochemical methods including carbonate clumped isotope,U-Pb isotopic dating,etc.,to rebuild the dolomitization pathway and evaluate its effects on reservoir formation.On the basis of detailed rock thin section observation,five dolomitic structural components are identified,including original fabric-retained dolomite(microbial and/or micrite structure),buried metasomatic dolomite I(subhedral-euhedral fine,medium and coarse crystalline structure),buried metasomatic dolomite II(allotriomorphic-subhedral fine,medium and coarse crystalline structure),buried precipitation dolomite and coarse crystalline saddle dolomite.Among them,the first three exist in the form of rocks,the latter two occur as dolomite minerals filling in pores and fractures.The corresponding petrological and geochemical identification templates for them are established.Based on the identification of the five dolomitic structural components,six dolomitization pathways for three types of reservoirs(preserved dolomite,reworked dolomite and limestone buried dolomitization)are distinguished.The initial porosity of the original rock before dolomitization and the dolomitization pathway are the main factors controlling the development of dolomite reservoirs.The preserved dolomite and reworked dolomite types have the most favorable dolomitization pathway for reservoir formation,and are large scale and controlled by sedimentary facies in development and distribution,making them the first choices for oil and gas exploration in deep carbonate formations. 展开更多
关键词 DOLOMITIZATION dolomitization pathway dolomite reservoir CARBONATES penecontemporaneous environment burial environment dolomite genesis identification template
下载PDF
Hydrothermal-sedimentary dolomite—A case from the Middle Permian in eastern Junggar Basin,China
4
作者 Shuai Zhang Yi-Qun Liu +2 位作者 Hong Li Xin Jiao Ding-Wu Zhou 《Journal of Palaeogeography》 SCIE CSCD 2020年第4期415-437,共23页
The Middle Permian Lucaogou Formation in the Jimusar Sag,eastern Junggar Basin,NW China,was deposited in a salt lake within an intracontinental rift basin with intense hydrothermal activity.Hydrothermal-sedimentary do... The Middle Permian Lucaogou Formation in the Jimusar Sag,eastern Junggar Basin,NW China,was deposited in a salt lake within an intracontinental rift basin with intense hydrothermal activity.Hydrothermal-sedimentary dolomite in the form of three types of dolostones,namely,analcime-feldspar dolostone(AFD),silicic dolostone(SD)and buddingtonite-albite dolostone(BAD),related to syn-sedimentary hydrothermal activity at lake bottom was discovered.The characteristics and formation mechanism of the dolomite were studied based on micron-scale petrographic and isotopic geochemical research.The syn-depositional formation of these dolostones was indicated by their rock-mineral features and syn-sedimentary deformation stage.The dolomite was composed of relatively poorly ordered proto-dolomite crystals with micron-sized spherical or sub-spherical morphology and coexisted with hydrothermal minerals,including analcime,buddingtonite,albite and chalcedony.Albite clasts were replaced by the dolomite,indicating high-temperature conditions during formation.The remarkably low strontium isotopic compositions of the dolostones(87Sr/86Sr with an average of 0.705687)indicated that mantle-derived materials might have involved in the ore-forming fluid.The dolostones had positiveδ13CPDB values(with an average of 6.94‰)and negativeδ18OPDB values(with an average of-8.12‰).Based on theδ18OPDB values,the formation temperatures of the dolomite were at least^25ºC higher than those of the penecontemporaneous dolomite in the Lucaogou Formation in the study area.It is concluded that the dolomite precipitated from hydrothermal fluid erupting at the lake bottom.The possible genetic models are described.We suggest that the hydrothermal-sedimentary dolomite is an important genetic type,and this study may help increase the awareness of this understudied type of dolomite. 展开更多
关键词 dolomite genesis Hydrothermal sedimentary dolomite Permian Lucaogou Formation Jimusar Sag Junggar Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部