Objective Researchers have recently discovered that sublacustrine sedimentary exhalative mechanism associated with volcanism,is the principle way to form lacustrine exhalative rocks.These rocks differentiate themselve...Objective Researchers have recently discovered that sublacustrine sedimentary exhalative mechanism associated with volcanism,is the principle way to form lacustrine exhalative rocks.These rocks differentiate themselves from normal sedimentary rocks in their specificpetrofabric and material composition.展开更多
To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology ...To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.展开更多
Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock r...Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock reservoir of the Fengcheng Formation in the Mahu Sag were analyzed by polarized and fluorescence thin sections,scanning electron microscope(SEM),electron microprobe(EMP),C,O and Sr isotopes analysis,and other techniques.(1)Dolomites were mainly precipitated in three stages:penecontemporaneous-shallow burial stage(early stage of the Middle Permian),middle burial stage(middle stage of the Middle Permian),and middle-deep burial stage,with the former two stages in dominance.(2)Dolomitization fluid was high-salinity brine originating from alkaline lake.In the penecontemporaneous-shallow burial stage,Mg^(2+)was mainly supplied by alkaline-lake fluid and devitrification of volcanic glass.In the middle burial stage,Mg^(2+)mainly came from the transformation of clay minerals,devitrification of volcanic glass and dissolution of aluminosilicates such as feldspar.(3)Regular changes of Mg,Mn,Fe,Sr,Si and other elements during the growth of dolomite were mainly related to the alkaline-lake fluid,and to different influences of devitrification and diagenetic alteration of volcanic materials during the burial.(4)In the penecontemporaneous stage,induced by alkaline-lake microorganisms,the micritic-microcrystalline dolomites were formed by primary precipitation,replacement of aragonite and high-Mg calcite,and other processes;in the shallow burial stage,the silt-sized dolomites were formed by continuous growth of micritic-microcrystalline dolomite and replacement of calcites,tuffs and other substances;in the middle burial stage,the dolomites,mainly silt-and fine-sized,were formed by replacement of volcanic materials.The research results are referential for investigating the formation mechanism and distribution patterns of tight dolomitic reservoirs in the Mahu Sag and other similar oil and gas bearing areas.展开更多
Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To a...Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery.展开更多
基金financially supported by the National Natural Science Foundation of China(grants No.41572097,41472088 and 41002033)the State Scholarship Fund of China Scholarship Council
文摘Objective Researchers have recently discovered that sublacustrine sedimentary exhalative mechanism associated with volcanism,is the principle way to form lacustrine exhalative rocks.These rocks differentiate themselves from normal sedimentary rocks in their specificpetrofabric and material composition.
文摘To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.
基金Supported the Major National Oil and Gas Projects of China(2016ZX05046-006).
文摘Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock reservoir of the Fengcheng Formation in the Mahu Sag were analyzed by polarized and fluorescence thin sections,scanning electron microscope(SEM),electron microprobe(EMP),C,O and Sr isotopes analysis,and other techniques.(1)Dolomites were mainly precipitated in three stages:penecontemporaneous-shallow burial stage(early stage of the Middle Permian),middle burial stage(middle stage of the Middle Permian),and middle-deep burial stage,with the former two stages in dominance.(2)Dolomitization fluid was high-salinity brine originating from alkaline lake.In the penecontemporaneous-shallow burial stage,Mg^(2+)was mainly supplied by alkaline-lake fluid and devitrification of volcanic glass.In the middle burial stage,Mg^(2+)mainly came from the transformation of clay minerals,devitrification of volcanic glass and dissolution of aluminosilicates such as feldspar.(3)Regular changes of Mg,Mn,Fe,Sr,Si and other elements during the growth of dolomite were mainly related to the alkaline-lake fluid,and to different influences of devitrification and diagenetic alteration of volcanic materials during the burial.(4)In the penecontemporaneous stage,induced by alkaline-lake microorganisms,the micritic-microcrystalline dolomites were formed by primary precipitation,replacement of aragonite and high-Mg calcite,and other processes;in the shallow burial stage,the silt-sized dolomites were formed by continuous growth of micritic-microcrystalline dolomite and replacement of calcites,tuffs and other substances;in the middle burial stage,the dolomites,mainly silt-and fine-sized,were formed by replacement of volcanic materials.The research results are referential for investigating the formation mechanism and distribution patterns of tight dolomitic reservoirs in the Mahu Sag and other similar oil and gas bearing areas.
基金financial support from National Iranian South Oil Company(NISOC)
文摘Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery.