We give a decomposition of the Hardy space Hz^1(Ω) into "div-curl" quantities for Lipschitz domains in R^n. We also prove a decomposition of Hz^1(Ω) into Jacobians det Du, u ∈ W0^1,2 (Ω,R^2) for Ω in R^2....We give a decomposition of the Hardy space Hz^1(Ω) into "div-curl" quantities for Lipschitz domains in R^n. We also prove a decomposition of Hz^1(Ω) into Jacobians det Du, u ∈ W0^1,2 (Ω,R^2) for Ω in R^2. This partially answers a well-known open problem.展开更多
基金supported by Australian Government through the Australian Research Council,NNSF of China(Grant No.10371069)NSF of Guangdong Province(Grant No.032038)
文摘We give a decomposition of the Hardy space Hz^1(Ω) into "div-curl" quantities for Lipschitz domains in R^n. We also prove a decomposition of Hz^1(Ω) into Jacobians det Du, u ∈ W0^1,2 (Ω,R^2) for Ω in R^2. This partially answers a well-known open problem.