It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simul...It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.展开更多
BACKGROUND: Recent studies have shown the clinical significance of epidermal growth factor-like domain 7(EGFL7)in a variety of cancers. However, the relationship between EGFL7 and the prognosis of pancreatic cancer...BACKGROUND: Recent studies have shown the clinical significance of epidermal growth factor-like domain 7(EGFL7)in a variety of cancers. However, the relationship between EGFL7 and the prognosis of pancreatic cancer(PC) remains unclear. The present study was undertaken to investigate the role of EGFL7 in the prognosis of PC.METHODS: The expression of EGFL7 in nine PC cell lines was first determined by Western blotting analysis. Tissue microarray-based immunohistochemical staining was performed in paired formalin-fixed paraffin-embedded tumor and non-tumor samples from 83 patients with PC. Finally,correlations between EGFL7 expression and clinicopathological variables as well as overall survival were evaluated.RESULTS: EGFL7 was widely expressed in all PC cell lines tested.EGFL7 expression in tumor tissues was significantly higher than that in non-tumor tissues(P0.040). In addition, univariate analysis revealed that high EGFL7 expression in tumor tissues was significantly associated with poor overall survival,accompanied by several conventional clinicopathological variables, such as gender, histological grade and lymph node metastasis. In a multivariate Cox regression test, EGFL7 expression was identified as an independent marker for longterm outcome of PC.CONCLUSION: Our data showed that EGFL7 is extensively expressed in PC and that EGFL7 is associated with poor prognosis.展开更多
Insulin-like growth factor 1 (IGF-I) is a potential nutrient for nerve repair. However, it is impractical as a therapy because of its limited half- life, rapid clearance, and limited target specificity. To achieve t...Insulin-like growth factor 1 (IGF-I) is a potential nutrient for nerve repair. However, it is impractical as a therapy because of its limited half- life, rapid clearance, and limited target specificity. To achieve targeted and long-lasting treatment, we investigated the addition of a binding structure by fusing a collagen-binding domain to IGF- 1. After confirming its affinity for collagen, the biological activity of this construct was examined by measuring cell proliferation after transfection into PC12 and Schwann cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-di- phenyl-2-H-tetrazolium bromide assay. Immunofluorescence staining was conducted to detect neurofilament and microtubule-associated protein 2 expression, while real time-polymerase chain reaction was utilized to determine IGF-1 receptor and nerve growth/actor mRNA expression. Our results demonstrate a significant increase in collagen-binding activity of the recombinant protein compared with IGF-1. Moreover, the recombinant protein promoted proliferation of PC12 and Schwann cells, and increased the expression of neurofilament and microtubule-associated protein 2. Importantly, the recombinant protein also stimulated sustained expression of IGF-1 receptor and nerve growth factor mRNA for days. These results show that the recombinant protein achieved the goal of targeting and long-lasting treatment, and thus could become a clinically used factor for promoting nerve regeneration with a prolonged therapeutic effect.展开更多
Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle ce...Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.展开更多
The metal-free synthesis of graphene on singlecrystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth ...The metal-free synthesis of graphene on singlecrystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed,single-crystal silicon substrate using metal-free, ambientpressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates.展开更多
The binding function of EGF1 domain peptide with tissue factor(TF)and its ability of triggering coagulation were explored.The TF expression model in vitro was established by lipopolysaccha-ride induction.The affinity ...The binding function of EGF1 domain peptide with tissue factor(TF)and its ability of triggering coagulation were explored.The TF expression model in vitro was established by lipopolysaccha-ride induction.The affinity of EGFP-EGF1 and TF expressing cells was analyzed by fluorescence microscopy and flow cytometry(FCM).The affinity of EGFP-EGF1 and rat soluble TF was quantitated by surface plasmon resonance(SPR).The ability of EGFP-EGF1 in triggering coagulation was tested by prothrombin time assay.The FCM res...展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20774036) and the Fok Ying Tung Education Foundation (No.114018).
文摘It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.
基金supported by a grant from the Research Special Fund for Public Welfare Industry of Health(201202007)
文摘BACKGROUND: Recent studies have shown the clinical significance of epidermal growth factor-like domain 7(EGFL7)in a variety of cancers. However, the relationship between EGFL7 and the prognosis of pancreatic cancer(PC) remains unclear. The present study was undertaken to investigate the role of EGFL7 in the prognosis of PC.METHODS: The expression of EGFL7 in nine PC cell lines was first determined by Western blotting analysis. Tissue microarray-based immunohistochemical staining was performed in paired formalin-fixed paraffin-embedded tumor and non-tumor samples from 83 patients with PC. Finally,correlations between EGFL7 expression and clinicopathological variables as well as overall survival were evaluated.RESULTS: EGFL7 was widely expressed in all PC cell lines tested.EGFL7 expression in tumor tissues was significantly higher than that in non-tumor tissues(P0.040). In addition, univariate analysis revealed that high EGFL7 expression in tumor tissues was significantly associated with poor overall survival,accompanied by several conventional clinicopathological variables, such as gender, histological grade and lymph node metastasis. In a multivariate Cox regression test, EGFL7 expression was identified as an independent marker for longterm outcome of PC.CONCLUSION: Our data showed that EGFL7 is extensively expressed in PC and that EGFL7 is associated with poor prognosis.
基金supported by the National Natural Science Foundation of China,No.81350013a grant from the Jilin Provincial Science and Technology Plan of China,No.20160101027JC&SC201502001the Graduate Innovation Fund of Jilin University in China,No.2017031&2017176
文摘Insulin-like growth factor 1 (IGF-I) is a potential nutrient for nerve repair. However, it is impractical as a therapy because of its limited half- life, rapid clearance, and limited target specificity. To achieve targeted and long-lasting treatment, we investigated the addition of a binding structure by fusing a collagen-binding domain to IGF- 1. After confirming its affinity for collagen, the biological activity of this construct was examined by measuring cell proliferation after transfection into PC12 and Schwann cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-di- phenyl-2-H-tetrazolium bromide assay. Immunofluorescence staining was conducted to detect neurofilament and microtubule-associated protein 2 expression, while real time-polymerase chain reaction was utilized to determine IGF-1 receptor and nerve growth/actor mRNA expression. Our results demonstrate a significant increase in collagen-binding activity of the recombinant protein compared with IGF-1. Moreover, the recombinant protein promoted proliferation of PC12 and Schwann cells, and increased the expression of neurofilament and microtubule-associated protein 2. Importantly, the recombinant protein also stimulated sustained expression of IGF-1 receptor and nerve growth factor mRNA for days. These results show that the recombinant protein achieved the goal of targeting and long-lasting treatment, and thus could become a clinically used factor for promoting nerve regeneration with a prolonged therapeutic effect.
文摘Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.
基金financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11405253, 11225527, 11575283, 11205235, U1632129, U1332205)Shanghai Science Foundation (14YF1407500)the Youth Innovation Promotion Association CAS (2016237)
文摘The metal-free synthesis of graphene on singlecrystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed,single-crystal silicon substrate using metal-free, ambientpressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates.
基金supported by grants from National Basic Research Program of China(973 Program,No.2007CB935803)National Natural Sciences Foundation of China(No.30825018)
文摘The binding function of EGF1 domain peptide with tissue factor(TF)and its ability of triggering coagulation were explored.The TF expression model in vitro was established by lipopolysaccha-ride induction.The affinity of EGFP-EGF1 and TF expressing cells was analyzed by fluorescence microscopy and flow cytometry(FCM).The affinity of EGFP-EGF1 and rat soluble TF was quantitated by surface plasmon resonance(SPR).The ability of EGFP-EGF1 in triggering coagulation was tested by prothrombin time assay.The FCM res...