This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided ...This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.展开更多
The limiting absorption principle is used to solve the scattering problem of time harmonic acoustic waves by penetrable objects in Sobolev spaces. The method is based on integral representation of the solution using t...The limiting absorption principle is used to solve the scattering problem of time harmonic acoustic waves by penetrable objects in Sobolev spaces. The method is based on integral representation of the solution using the Green's kernel of the Helmholtz equation.展开更多
基金supported by the National Natural Science Foundations of China(10971061)Hunan Provincial Natural Science Foundation of China (09JJ6013)
文摘This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.
文摘The limiting absorption principle is used to solve the scattering problem of time harmonic acoustic waves by penetrable objects in Sobolev spaces. The method is based on integral representation of the solution using the Green's kernel of the Helmholtz equation.